The Fokker–Planck equation for the system “Brownian particle in thermostat” based on the presented probability approach
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (2010) no. 1, pp. 48-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A one-dimensional system “Brownian particle in thermostat” is considered. The Fokker–Planck equation describing dynamics of the particle system under consideration is derived on the basis of the presented probability approach. The solution of the derived equation is also obtained.
@article{JMAG_2010_6_1_a3,
     author = {H. M. Hubal},
     title = {The {Fokker{\textendash}Planck} equation for the system {{\textquotedblleft}Brownian} particle in thermostat{\textquotedblright} based on the presented probability approach},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {48--55},
     year = {2010},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2010_6_1_a3/}
}
TY  - JOUR
AU  - H. M. Hubal
TI  - The Fokker–Planck equation for the system “Brownian particle in thermostat” based on the presented probability approach
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2010
SP  - 48
EP  - 55
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2010_6_1_a3/
LA  - en
ID  - JMAG_2010_6_1_a3
ER  - 
%0 Journal Article
%A H. M. Hubal
%T The Fokker–Planck equation for the system “Brownian particle in thermostat” based on the presented probability approach
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2010
%P 48-55
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2010_6_1_a3/
%G en
%F JMAG_2010_6_1_a3
H. M. Hubal. The Fokker–Planck equation for the system “Brownian particle in thermostat” based on the presented probability approach. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (2010) no. 1, pp. 48-55. http://geodesic.mathdoc.fr/item/JMAG_2010_6_1_a3/

[1] N. N. Bogolyubov, Problems of a Dynamical Theory in Statistical Physics, Gostekhizdat, Moscow, 1946 (Russian)

[2] Siberian Math. J., 47:1 (2006), 152–168 | DOI | MR | Zbl

[3] C. Cercignani, V. I. Gerasimenko, D. Ya. Petrina, Many-Particle Dynamics and Kinetic Equations, Kluwer Acad. Publ., Dordrecht, 1997 | MR | Zbl

[4] R. Illner, M. Pulvirenti, “A Derivation of the BBGKY Hierarchy for Hard Sphere Particle Systems”, Transp. Theory and Stat., 16:7 (1987), 997–1012 | DOI | MR | Zbl

[5] M. A. Stashenko, G. N. Gubal', “Boltsman–Gred boundary Path for One-Measurable System”, Sci. Bull. Volyn State Univ., 2002, no. 1, 5–13 (Ukrainian)

[6] D. Dürr, S. Goldstein, J. L. Lebowitz, “A Mechanical Model of Brownian Motion”, Comm. Math. Phys., 78:4 (1981), 507–530 | DOI | MR | Zbl

[7] Yu. B. Rumer, M. Sh. Ryvkin, Thermodynamics, Statistical Physics and Kinetics, Izd-vo Novosibirsk. Univ., Novosibirsk, 2000 (Russian)