@article{JMAG_2010_6_1_a1,
author = {I. Egorova and G. Teschl},
title = {A {Paley{\textendash}Wiener} theorem for periodic scattering with applications to the {Korteweg{\textendash}de~Vries} equation},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {21--33},
year = {2010},
volume = {6},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2010_6_1_a1/}
}
TY - JOUR AU - I. Egorova AU - G. Teschl TI - A Paley–Wiener theorem for periodic scattering with applications to the Korteweg–de Vries equation JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2010 SP - 21 EP - 33 VL - 6 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2010_6_1_a1/ LA - en ID - JMAG_2010_6_1_a1 ER -
%0 Journal Article %A I. Egorova %A G. Teschl %T A Paley–Wiener theorem for periodic scattering with applications to the Korteweg–de Vries equation %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2010 %P 21-33 %V 6 %N 1 %U http://geodesic.mathdoc.fr/item/JMAG_2010_6_1_a1/ %G en %F JMAG_2010_6_1_a1
I. Egorova; G. Teschl. A Paley–Wiener theorem for periodic scattering with applications to the Korteweg–de Vries equation. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (2010) no. 1, pp. 21-33. http://geodesic.mathdoc.fr/item/JMAG_2010_6_1_a1/
[1] T. Aktosun, “Bound States and Inverse Scattering for the Schrödinger Equation in One Dimension”, J. Math. Phys., 35:12 (1994), 6231–6236 | DOI | MR | Zbl
[2] A. Boutet de Monvel, I. Egorova, G. Teschl, “Inverse Scattering Theory for One-Dimensional Schrödinger Operators with Steplike Finite-Gap Potentials”, J. d'Analyse Math., 106:1 (2008), 271–316 | DOI | MR | Zbl
[3] P. Deift, E. Trubowitz, “Inverse Scattering on the Line.”, Commun. Pure Appl. Math., 32 (1979), 121–251 | DOI | MR | Zbl
[4] I. Egorova, G. Teschl, On the Cauchy Problem for the Korteweg–de Vries Equation with Steplike Finite-Gap Initial Data. II. Perturbations with Finite Moments, preprint, arXiv: 0909.1576 | MR
[5] I. Egorova, G. Teschl, On the Cauchy Problem for the modified Korteweg–de Vries Equation with Steplike Finite-Gap Initial Data, preprint, arXiv: 0909.3499 | MR
[6] I. Egorova, K. Grunert, G. Teschl, “On the Cauchy Problem for the Korteweg–de Vries Equation with Steplike Finite-Gap Initial Data. I. Schwartz-Type Perturbations”, Nonlinearity, 22 (2009), 1431–1457 | DOI | MR | Zbl
[7] L. Escauriaza, C. E. Kenig, G. Ponce, L. Vega, “On Uniqueness Properties of Solutions of the $k$-generalized KdV Equations”, J. Funct. Anal., 244 (2007), 504–535 | DOI | MR | Zbl
[8] N. E. Firsova, “An Inverse Scattering Problem for the Perturbed Hill Operator”, Mat. Zametki, 18:6 (1975), 831–843 | MR | Zbl
[9] N. E. Firsova, “A Direct and Inverse Scattering Problem for a One-Dimensional Perturbed Hill Operator”, Mat. Sborn.(N.S.), 130(172):3 (1986), 349–385 | MR | Zbl
[10] N. E. Firsova, “Resonances of the Perturbed Hill Operator with Exponentially Decreasing Extrinsic Potential”, Mat. Zametki, 36 (1984), 711–724 | MR | Zbl
[11] N. E. Firsova, “Solution of the Cauchy Problem for the Korteweg–de Vries Equation with Initial Data that are the Sum of a Periodic and a Rapidly Decreasing Function”, Math. USSR Sb., 63:1 (1989), 257–265 | DOI | MR | Zbl
[12] C. S. Gardner, J. M. Green, M. D. Kruskal, R. M. Miura, “Method for Solving the Korteweg–de Vries Equation”, Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI
[13] F. Gesztesy, H. Holden, Soliton Equations and their Algebro-Geometric Solutions, v. I, Cambridge Stud. Adv. Math., 79, $(1+1)$-Dimensional Continuous Models, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl
[14] F. Gesztesy, R. Svirsky, “(m)KdV-Solitons on the Background of Quasiperiodic Finite-Gap Solutions”, Memoirs Amer. Math. Soc., 118:563 (1995), 88 | MR
[15] F. Gesztesy, G. Teschl, “On the Double Commutation Method”, Proc. Amer. Math. Soc., 124 (1996), 1831–1840 | DOI | MR | Zbl
[16] F. Gesztesy, R. Ratnaseelan, G. Teschl, “The KdV Hierarchy and Associated Trace Formulas”, Proc. Int. Conf. Appl. Operator Theory, Oper. Theory Adv. Appl., 87, eds. I. Gohberg, P. Lancaster, P. N. Shivakumar, Birkhäuser, Basel, 1996 | MR | Zbl
[17] H. Krüger, G. Teschl, Unique Continuation for Discrete Nonlinear Wave Equations, preprint, arXiv: 0904.0011 | MR
[18] V. A. Marchenko, Sturm–Liouville Operators and Applications, Birkhäuser, Basel, 1986 | MR | Zbl
[19] A. Mikikits-Leitner, G. Teschl, Trace Formulas for Schrödinger Operators in Connection with Scattering Theory for Finite-Gap Backgrounds, preprint, arXiv: 0902.3917 | MR
[20] S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of Solitons. The Inverse Scattering Method, Springer, Berlin, 1984 | MR | Zbl
[21] A. Rybkin, “Meromorphic Solutions to the KdV Equation with Nondecaying Initial Data Supported on a Left Half-Line”, Nonlinearity (to appear) | MR
[22] S. Tarama, “Analytic Solutions of the Korteweg–de Vries Equation”, J. Math. Kyoto Univ., 44 (2004), 1–32 | MR | Zbl
[23] G. Teschl, “Algebro-Geometric Constraints on Solitons with Respect to Quasiperiodic Backgrounds”, Bull. London Math. Soc., 39:4 (2007), 677–684 | DOI | MR | Zbl
[24] B. Zhang, “Unique continuation for the Korteweg–de Vries Equation”, SIAM J. Math. Anal., 23 (1992), 55–71 | DOI | MR | Zbl