A Paley–Wiener theorem for periodic scattering with applications to the Korteweg–de Vries equation
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (2010) no. 1, pp. 21-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A one-dimensional Schrödinger operator which is a short-range perturbation of a finite-gap operator is considered. There are given the necessary and sufficient conditions on the left/right reflection coefficient such that the difference of the potentials has finite support to the left/right, respectively. Moreover, these results are applied to show a unique continuation type result for solutions of the Korteweg–de Vries equation in this context. By virtue of the Miura transform an analogous result for the modified Korteweg–de Vries equation is also obtained.
@article{JMAG_2010_6_1_a1,
     author = {I. Egorova and G. Teschl},
     title = {A {Paley{\textendash}Wiener} theorem for periodic scattering with applications to the {Korteweg{\textendash}de~Vries} equation},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {21--33},
     year = {2010},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2010_6_1_a1/}
}
TY  - JOUR
AU  - I. Egorova
AU  - G. Teschl
TI  - A Paley–Wiener theorem for periodic scattering with applications to the Korteweg–de Vries equation
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2010
SP  - 21
EP  - 33
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2010_6_1_a1/
LA  - en
ID  - JMAG_2010_6_1_a1
ER  - 
%0 Journal Article
%A I. Egorova
%A G. Teschl
%T A Paley–Wiener theorem for periodic scattering with applications to the Korteweg–de Vries equation
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2010
%P 21-33
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2010_6_1_a1/
%G en
%F JMAG_2010_6_1_a1
I. Egorova; G. Teschl. A Paley–Wiener theorem for periodic scattering with applications to the Korteweg–de Vries equation. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (2010) no. 1, pp. 21-33. http://geodesic.mathdoc.fr/item/JMAG_2010_6_1_a1/

[1] T. Aktosun, “Bound States and Inverse Scattering for the Schrödinger Equation in One Dimension”, J. Math. Phys., 35:12 (1994), 6231–6236 | DOI | MR | Zbl

[2] A. Boutet de Monvel, I. Egorova, G. Teschl, “Inverse Scattering Theory for One-Dimensional Schrödinger Operators with Steplike Finite-Gap Potentials”, J. d'Analyse Math., 106:1 (2008), 271–316 | DOI | MR | Zbl

[3] P. Deift, E. Trubowitz, “Inverse Scattering on the Line.”, Commun. Pure Appl. Math., 32 (1979), 121–251 | DOI | MR | Zbl

[4] I. Egorova, G. Teschl, On the Cauchy Problem for the Korteweg–de Vries Equation with Steplike Finite-Gap Initial Data. II. Perturbations with Finite Moments, preprint, arXiv: 0909.1576 | MR

[5] I. Egorova, G. Teschl, On the Cauchy Problem for the modified Korteweg–de Vries Equation with Steplike Finite-Gap Initial Data, preprint, arXiv: 0909.3499 | MR

[6] I. Egorova, K. Grunert, G. Teschl, “On the Cauchy Problem for the Korteweg–de Vries Equation with Steplike Finite-Gap Initial Data. I. Schwartz-Type Perturbations”, Nonlinearity, 22 (2009), 1431–1457 | DOI | MR | Zbl

[7] L. Escauriaza, C. E. Kenig, G. Ponce, L. Vega, “On Uniqueness Properties of Solutions of the $k$-generalized KdV Equations”, J. Funct. Anal., 244 (2007), 504–535 | DOI | MR | Zbl

[8] N. E. Firsova, “An Inverse Scattering Problem for the Perturbed Hill Operator”, Mat. Zametki, 18:6 (1975), 831–843 | MR | Zbl

[9] N. E. Firsova, “A Direct and Inverse Scattering Problem for a One-Dimensional Perturbed Hill Operator”, Mat. Sborn.(N.S.), 130(172):3 (1986), 349–385 | MR | Zbl

[10] N. E. Firsova, “Resonances of the Perturbed Hill Operator with Exponentially Decreasing Extrinsic Potential”, Mat. Zametki, 36 (1984), 711–724 | MR | Zbl

[11] N. E. Firsova, “Solution of the Cauchy Problem for the Korteweg–de Vries Equation with Initial Data that are the Sum of a Periodic and a Rapidly Decreasing Function”, Math. USSR Sb., 63:1 (1989), 257–265 | DOI | MR | Zbl

[12] C. S. Gardner, J. M. Green, M. D. Kruskal, R. M. Miura, “Method for Solving the Korteweg–de Vries Equation”, Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI

[13] F. Gesztesy, H. Holden, Soliton Equations and their Algebro-Geometric Solutions, v. I, Cambridge Stud. Adv. Math., 79, $(1+1)$-Dimensional Continuous Models, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[14] F. Gesztesy, R. Svirsky, “(m)KdV-Solitons on the Background of Quasiperiodic Finite-Gap Solutions”, Memoirs Amer. Math. Soc., 118:563 (1995), 88 | MR

[15] F. Gesztesy, G. Teschl, “On the Double Commutation Method”, Proc. Amer. Math. Soc., 124 (1996), 1831–1840 | DOI | MR | Zbl

[16] F. Gesztesy, R. Ratnaseelan, G. Teschl, “The KdV Hierarchy and Associated Trace Formulas”, Proc. Int. Conf. Appl. Operator Theory, Oper. Theory Adv. Appl., 87, eds. I. Gohberg, P. Lancaster, P. N. Shivakumar, Birkhäuser, Basel, 1996 | MR | Zbl

[17] H. Krüger, G. Teschl, Unique Continuation for Discrete Nonlinear Wave Equations, preprint, arXiv: 0904.0011 | MR

[18] V. A. Marchenko, Sturm–Liouville Operators and Applications, Birkhäuser, Basel, 1986 | MR | Zbl

[19] A. Mikikits-Leitner, G. Teschl, Trace Formulas for Schrödinger Operators in Connection with Scattering Theory for Finite-Gap Backgrounds, preprint, arXiv: 0902.3917 | MR

[20] S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of Solitons. The Inverse Scattering Method, Springer, Berlin, 1984 | MR | Zbl

[21] A. Rybkin, “Meromorphic Solutions to the KdV Equation with Nondecaying Initial Data Supported on a Left Half-Line”, Nonlinearity (to appear) | MR

[22] S. Tarama, “Analytic Solutions of the Korteweg–de Vries Equation”, J. Math. Kyoto Univ., 44 (2004), 1–32 | MR | Zbl

[23] G. Teschl, “Algebro-Geometric Constraints on Solitons with Respect to Quasiperiodic Backgrounds”, Bull. London Math. Soc., 39:4 (2007), 677–684 | DOI | MR | Zbl

[24] B. Zhang, “Unique continuation for the Korteweg–de Vries Equation”, SIAM J. Math. Anal., 23 (1992), 55–71 | DOI | MR | Zbl