Plancherel measure for the quantum matrix ball-1
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009) no. 4, pp. 315-346 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Plancherel formula is one of the celebrated results of harmonic analysis on semisimple Lie groups and their homogeneous spaces. The main goal of this work is to find a $q$-analogue of the Plancherel formula for spherical transform on the unit matrix ball. Here we present an explicit formula for the radial part of the Plancherel measure. The $q$-Jacobi polynomials as spherical functions naturally arise on the way.
@article{JMAG_2009_5_4_a0,
     author = {O. Bershtein and Ye. Kolisnyk},
     title = {Plancherel measure for the quantum matrix ball-1},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {315--346},
     year = {2009},
     volume = {5},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2009_5_4_a0/}
}
TY  - JOUR
AU  - O. Bershtein
AU  - Ye. Kolisnyk
TI  - Plancherel measure for the quantum matrix ball-1
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2009
SP  - 315
EP  - 346
VL  - 5
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/JMAG_2009_5_4_a0/
LA  - en
ID  - JMAG_2009_5_4_a0
ER  - 
%0 Journal Article
%A O. Bershtein
%A Ye. Kolisnyk
%T Plancherel measure for the quantum matrix ball-1
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2009
%P 315-346
%V 5
%N 4
%U http://geodesic.mathdoc.fr/item/JMAG_2009_5_4_a0/
%G en
%F JMAG_2009_5_4_a0
O. Bershtein; Ye. Kolisnyk. Plancherel measure for the quantum matrix ball-1. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009) no. 4, pp. 315-346. http://geodesic.mathdoc.fr/item/JMAG_2009_5_4_a0/

[1] W. Baldoni, P. M. Frajria, “The Harish-Chandra Homomorphism for a Quantized Classical Hermitean Symmetric Pair”, Ann. Inst. Fourier, 49 (1999), 1179–1214 | DOI | MR | Zbl

[2] O. Bershtein, “On a $q$-Analog of a Sahi Result”, J. Math. Phys., 48:4 (2007), 1917–1924 | DOI | MR

[3] O. Bershtein, “Degenerate Principal Series of Quantum Harish-Chandra Modules”, J. Math. Phys., 45:10 (2004), 3800–3827 | DOI | MR | Zbl

[4] O. Bershtein, Y. Kolisnyk, L. Vaksman, “On a $q$-Analog of the Wallach-Okounkov Formula”, Lett. Math. Phys., 78 (2006), 97–109 | DOI | MR | Zbl

[5] N. Bourbaki, Lie Groups and Lie Algebras. Chap. 4–6, Springer, Berlin–Heidelberg–New York, 2004 | MR

[6] K. A. Brown, K. R. Goodearl, Lectures on Algebraic Quantum Groups, Birkhäuser, Basel–Boston–Berlin, 2002 | MR

[7] J. F. Van Diejen, “Commuting Difference Operators with Polynomial Eigenfunctions”, Comp. Math., 95:2 (1995), 183–233 | MR | Zbl

[8] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[9] S. Helgason, Differential Geometry and Symmetric Spaces, Mir, Moscow, 1964 (Russian) | Zbl

[10] S. Helgason, Groups and Geometryc Analysis, Mir, Moscow, 1987 (Russian) | MR

[11] B. Hoogenboom, “Spherical Functions and Invariant Differential Operators on Complex Grassmann Manifolds”, Arkiv Mat., 20:1–2 (1982), 69–85 | DOI | MR | Zbl

[12] A. Joseph, Quantum Groups and Their Primitive Ideals, Springer-Verlag, Berlin–Heidelberg, 1995 | MR

[13] A. Klimyk, K. Schmüdgen, Quantum Groups and Their Representations, Springer, Berlin, 1997 | MR

[14] L. I. Korogodski, Y. S. Soibelman, Algebra of Functions on Quantum Groups. Part I, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[15] L. I. Korogodski, L. L. Vaksman, “Spherical Functions on Quantum Group $SU(1;1)$ and $q$-Analogue of the Meller-Fock Formula”, Funct. Anal. and Appl., 25:1 (1991), 60–62 (Russian) | MR | Zbl

[16] L. I. Korogodski, L. L. Vaksman, “On Harmonic Analysis on Quantum Group $SU(1;1)$”, 14th School on Operator Theory in Functional Spaces, N. Novgorod, 1989 (Russian) | Zbl

[17] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1995 | MR | Zbl

[18] M. A. Nainmark, Normalized Rings, Nauka, Moscow, 1968 (Russian)

[19] D. Shklyarov, S. Sinel'shchikov, L. Vaksman $q$-Analogues of Some Bounded Symmetric Domains, Czehoslovak J. Phys., 50:1 (2000), 175–180 | DOI | MR | Zbl

[20] D. L. Shklyarov, L. L. Vaksman, “Intergral Representations of Functions in the Quantum Disk, I”, Mat. Fiz., Anal., Geom., 4 (1997), 286–308 (Russian) | MR | Zbl

[21] D. Shklyarov, S. Sinel'shchikov, L. Vaksman, “Fock Representations and Quantum Matrices”, Intern. J. Math., 15:9 (2004), 1–40 | DOI | MR

[22] D. Shklyarov, S. Sinel'shchikov, L. Vaksman, “Hidden Symmetry of Some Algebras of $q$-Differential Operators”, Noncommutative Structures in Mathematics and Physics, eds. S. Duplij, J. Wess, NATO Sci. Ser., Kluwer, Dordrecht–Boston–London, 2000 | MR

[23] D. Shklyarov, S. Sinel'shchikov, L. Vaksman, On Function Theory in the Quantum Matrix Ball: an Invariant Integral, Preprint Math-QA/9803110, 1998

[24] S. Sinel'shchikov, L. Vaksman, “On $q$-Analogues of Bounded Symmetric Domains and Dolbeault Complexes”, Math. Phys., Anal., Geom., 1:1 (1998), 75–100 | DOI | MR | Zbl

[25] J. V. Stokman, Multivariable Orthogonal Polynomials and Quantum Grassmanians, Universal Press, Veenendaal, 1998

[26] J. V. Stokman, M. S. Dijkhuizen, “Some Limit Transitions between BC Type Orthogonal Polynomials Interpreted on Quantum Complex Grassmanians”, Publ. Res. Inst. Math. Sci., 35 (1999), 451–500 | DOI | MR | Zbl

[27] J. V. Stokman, “Multivariable Big and Little $q$-Jacobi Polynomials”, SIAMM J. Math. Anal., 28 (1997), 452–480 | DOI | MR

[28] M. Takesaki, Theory of Operator Algebras I, Springer, Berlin–New York, 1979 | MR