Necessary and sufficient conditions in inverse scattering problem on the axis for the triangular $2\times 2$ matrix potential
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009) no. 3, pp. 296-309 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The characteristic properties of the scattering data for the Schrödinger operator on the axis with a triangular $2\times 2$ matrix potential are obtained. A difference between the necessary and sufficient conditions for solvability of ISP under consideration, contained in the previous works of the authors, is eliminated.
@article{JMAG_2009_5_3_a3,
     author = {E. I. Zubkova and F. S. Rofe-Beketov},
     title = {Necessary and sufficient conditions in inverse scattering problem on the axis for the triangular $2\times 2$ matrix potential},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {296--309},
     year = {2009},
     volume = {5},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2009_5_3_a3/}
}
TY  - JOUR
AU  - E. I. Zubkova
AU  - F. S. Rofe-Beketov
TI  - Necessary and sufficient conditions in inverse scattering problem on the axis for the triangular $2\times 2$ matrix potential
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2009
SP  - 296
EP  - 309
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2009_5_3_a3/
LA  - en
ID  - JMAG_2009_5_3_a3
ER  - 
%0 Journal Article
%A E. I. Zubkova
%A F. S. Rofe-Beketov
%T Necessary and sufficient conditions in inverse scattering problem on the axis for the triangular $2\times 2$ matrix potential
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2009
%P 296-309
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2009_5_3_a3/
%G en
%F JMAG_2009_5_3_a3
E. I. Zubkova; F. S. Rofe-Beketov. Necessary and sufficient conditions in inverse scattering problem on the axis for the triangular $2\times 2$ matrix potential. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009) no. 3, pp. 296-309. http://geodesic.mathdoc.fr/item/JMAG_2009_5_3_a3/

[1] Birkhäuser, Basel, 1986 | MR | Zbl

[2] J. Soviet Math., 5 (1976), 334–396 | DOI | MR | Zbl

[3] VSP, Zeist, 1987 | MR

[4] E. I. Zubkova, F. S. Rofe-Beketov, “Inverse Scattering Problem on the Axis for the Schrödinger Operator with Triangular $2\times 2$ Matrix Potential. I. Main Theorem”, J. Math. Phys., Anal., Geom., 3:1 (2007), 47–60 | MR | Zbl

[5] E. I. Zubkova, F. S. Rofe-Beketov, “Inverse Scattering Problem on the Axis for the Schrödinger Operator with Triangular $2\times 2$ Matrix Potential. II. Addition of the Discrete Spectrum”, J. Math. Phys., Anal., Geom., 3:2 (2007), 176–195 | MR | Zbl

[6] V. E. Lyantse, “Nonselfadjoint Second Order Differential Operator on the Semiaxis”, Addendum I to the book: M. A. Naimark, Linear differential operators, 2nd Ed., Nauka, Moscow, 1969 (Russian) | Zbl

[7] I. P. Syroyid, The Composite Method of Inverse Scattering Problem and Studying Nonselfadjoint Lax Pairs for Korteveg-de Vries Systems, Ya.S. Pidstrygach Institute of Applied Problems in Mechanics and Mathematics, Ukrainian National Acad. Sci., Lviv, 2005 (Ukrainian)

[8] F. D. Gakhov, Boundary Problems, Fizmatgiz, Moscow, 1958 (Russian)

[9] N. I. Muskhelishvili, Singular Integral Equations, Fizmatgiz, Moscow, 1962 (Russian)

[10] F. D. Gakhov, Yu. I. Cherskiy, Convolution Type Equations, Nauka, Moscow, 1978 (Russian) | Zbl