Bulk universality for unitary matrix models
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009) no. 3, pp. 245-274 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A proof of universality in the bulk of spectrum of unitary matrix models, assuming that the potential is globally $C^2$ and locally $C^3$ function (see Theorem 1.2), is given. The proof is based on the determinant formulas for correlation functions in terms of polynomials orthogonal on the unit circle. The sin-kernel is obtained as a unique solution of a certain nonlinear integrodifferential equation without using asymptotics of orthogonal polynomials.
@article{JMAG_2009_5_3_a1,
     author = {M. Poplavskyi},
     title = {Bulk universality for unitary matrix models},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {245--274},
     year = {2009},
     volume = {5},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2009_5_3_a1/}
}
TY  - JOUR
AU  - M. Poplavskyi
TI  - Bulk universality for unitary matrix models
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2009
SP  - 245
EP  - 274
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2009_5_3_a1/
LA  - en
ID  - JMAG_2009_5_3_a1
ER  - 
%0 Journal Article
%A M. Poplavskyi
%T Bulk universality for unitary matrix models
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2009
%P 245-274
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2009_5_3_a1/
%G en
%F JMAG_2009_5_3_a1
M. Poplavskyi. Bulk universality for unitary matrix models. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009) no. 3, pp. 245-274. http://geodesic.mathdoc.fr/item/JMAG_2009_5_3_a1/

[1] M. L. Mehta, Random Matrices, Acad. Press, New York, 1991 | MR | Zbl

[2] A. Kolyandr, “On Eigenvalue Distribution of Invariant Ensembles of Random Matrices”, Dop. Ukr. Ac. Sci. Math., 1997, no. 7, 14–20 (Ukrainian) | MR | Zbl

[3] F. J. Dyson, “Statistical Theory of Energy Levels of Complex Systems, I–III”, J. Math. Phys., 3 (1962), 140–175 | DOI | MR | Zbl

[4] L. Pastur, M. Shcherbina, “Universality of the Local Eigenvalue Statistics for a Class of Unitary Invariant Matrix Ensembles”, J. Stat. Phys., 86 (1997), 109–147 | DOI | MR | Zbl

[5] P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach – CIMS, New York Univ., New York, 1999 | MR

[6] K. Johansson, “The Longest Increasing Subsequence in a Random Permutation and a Unitary Random Matrix Model”, Math. Res. Lett., 5 (1998), 63–82 | DOI | MR | Zbl

[7] N. I. Muskhelishvili, Singular Integral Equations, P. Noordhoff, Groningen, 1953 | MR

[8] L. Pastur, M. Shcherbina, “Bulk Universality and Related Properties of Hermitian Matrix Model”, J. Stat. Phys., 130 (2007), 205–250 | DOI | MR

[9] F. J. Dyson, “A Class of Matrix Ensembles”, J. Math. Phys., 13 (1972), 90–107 | DOI | MR

[10] P. Deift, T. Kriecherbauer, K. T.-K. McLaughlin, S. Venakides, X. Zhou, “Uniform Asymptotics for Polynomials Orthogonal with Respect to Varying Exponential Weights and Applications to Universality Questions in Random Matrix Theory”, Comm. Pure Appl. Math., 52 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl