@article{JMAG_2009_5_3_a0,
author = {O. Bershtein and S. Sinel'shchikov},
title = {A $q$-analog of the {Hua} equations},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {219--244},
year = {2009},
volume = {5},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2009_5_3_a0/}
}
O. Bershtein; S. Sinel'shchikov. A $q$-analog of the Hua equations. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009) no. 3, pp. 219-244. http://geodesic.mathdoc.fr/item/JMAG_2009_5_3_a0/
[1] W. Baldoni, P. M. Frajria, “The Harish-Chandra Homomorphism for a Quantized Classical Hermitian Symmetric Pair”, Ann. Inst. Fourier, 49:2 (1999), 1179–1214 | DOI | MR | Zbl
[2] C. Benson, D. Buraczewski, E. Damek, G. Ratcliff, “Differential Systems of Type (1,1) of Hermitian Symmetric Spaces and Their Zeros”, J. Funct. Anal., 215 (2004), 427–475 | DOI | MR | Zbl
[3] O. Bershtein, “Degenerate Principal Series of Quantum Harish-Chandra Modules”, J. Math. Phys., 45:10 (2004), 3800–3827 | DOI | MR | Zbl
[4] K. A. Brown, K. R. Goodearl, Lectures on Algebraic Quantum Groups, Birkhäuser, Basel–Boston–Berlin, 2002 | MR
[5] I. Damiani, C. De Concini, “Quantum Groups and Poisson Groups”, Representations of Lie Groups and Quantum Groups, eds. V. Baldoni, M. A. Picardello, Longman Sci. and Tech., New–York, 1994 | MR | Zbl
[6] V. G. Drinfeld, “Quantum Groups”, Proc. Intern. Congr. Math. Berkeley, 1986, ed. A. M. Gleason, Amer. Math. Soc., Providence, RI, 1987 | MR
[7] Harish-Chandra, “Representations of Semisimple Lie Groups VI”, Amer. J. Math., 78 (1956), 564–628 | DOI | MR | Zbl
[8] S. Helgason, Differential Geometry and Symmetric Spaces, Acad. Press, New York–London, 1962 | MR | Zbl
[9] S. Helgason, Geometric Analysis on Symmetric Spases, Math. Surveys and Monogr., 39, Amer. Math. Soc., Providence, RI, 1994 | DOI | MR | Zbl
[10] L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Amer. Math. Soc., Providence, RI, 1963 | MR | Zbl
[11] H. P. Jakobsen, “Unitarity of Highest-Weight Modules for Quantum Groups”, Lett. Math. Phys., 41 (1997), 119–133 | DOI | MR | Zbl
[12] H. P. Jakobsen, H. Zhang, “A Class of Quadratic Matrix Algebras Arising from the Quantized Enveloping Algebra $U_q(A_{2n.1})$”, J. Math. Phys., 41 (2000), 2310–2336 | DOI | MR | Zbl
[13] H. P. Jakobsen, “Quantized Hermitian Symmetric Spaces”, Lie Theory and its Applications in Physics (Clausthal, 1995), World Sci. Publ., River Edge NJ, 1996 | MR | Zbl
[14] J. C. Jantzen, Lectures on Quantum Groups, Amer. Math. Soc., Providence, RI, 1996 | MR
[15] K. Johnson, A. Korányi, “The Hua Operators on Bounded Symmetric Domains of Tube Type”, Ann. Math., 111 (1980), 589–608 | DOI | MR | Zbl
[16] A. Kamita, “Quantum Deformations of Certain Prehomogeneous Vector Spaces III”, Hiroshima Math. J., 30:1 (2000), 79–115 | MR | Zbl
[17] A. Kamita, “Quantum $b$-Functions of Prehomogeneous Vector Spaces of Commutative Parabolic Type”, J. Algebra, 244 (2001), 581–603 | DOI | MR | Zbl
[18] A. Kamita, Y. Morita, T. Tanisaki, “Quantum Deformations of Certain Prehomogeneous Vector Spaces, I”, Hiroshima Math. J., 28:3 (1998), 527–540 | MR | Zbl
[19] A. Korányi, “Harmonic Functions on Symmetric Spaces”, Symmetric Spaces, Short Courses Presented at Washington University, Pure and Appl. Math., 8, eds. W. M. Boothby, G. L. Weiss, Marcel Dekker Inc., New York, 1972, 379–412 | MR
[20] A. Korányi, “Poisson Integrals and Boundary Components of Symmetric Spaces”, Invent. Math., 34 (1976), 19–35 | DOI | MR | Zbl
[21] Y. Morita, “Quantum Deformations of Certain Prehomogeneous Vector Spaces II”, Osaka J. Math., 37:2 (2000), 385–403 | MR | Zbl
[22] M. Noumi, H. Yamada, K. Mimachi, “Finite Dimensional Representations of the Quantum $GL_q(n,\mathbb C)$ and the Zonal Spherical Functions on $U_q(n)/U_q(n-1)$”, Jap. J. Math., 19 (1993), 31–80 | MR | Zbl
[23] D. Proskurin, L. Turowska, “On the $C^*$-Algebra Associated with $POL(MAT_{2,2})_q$”, Meth. Funct. Anal. and Topology, 7:2 (2001), 88–92 | MR | Zbl
[24] N. Yu. Reshetikhin, L. A. Takhtadjan, L. D. Faddeyev, “Quantization of Lie Groups and Lie Algebras”, Algebra and Analysis, 1:1 (1989), 178–206 | MR
[25] M. Rosso, “Représentations des Groupes Quantiques”, Sém. Bourbaki, Astérisque, 201–203, Soc. Math. France, Paris, 1992, 443–483 | MR
[26] D. Shklyarov, S. Sinel'shchikov, L. Vaksman, On Function Theory in Quantum Disc: Invariant Kernels, Preprint Math. QA/9808047
[27] D. Shklyarov, S. Sinel'shchikov, L. Vaksman, “A $q$-Analogue of the Berezin Quantization Method”, Lett. Math. Phys., 49 (1999), 253–261 | DOI | MR | Zbl
[28] D. Shklyarov, “On $q$-Analogues of Certain Prehomogeneous Vector Spaces: Comparison of Several Approaches”, Mat. Fiz., Anal., Geom., 8 (2001), 325–345 | MR | Zbl
[29] D. Shklyarov, S. Sinel'shchikov, A. Stolin, L. Vaksman, “Noncompact Quantum Groups and Quantum Harish-Chandra Modules”, Supersymmetry and Quantum Field Theory, ed. D. Sorokin, North-Holland, Netherlands; Nucl. Phys. B. Proc. Suppl., 102–103 (2001), 334–337 | DOI | MR | Zbl
[30] D. Shklyarov, S. Sinel'shchikov, A. Stolin, L. Vaksman, “On a $q$-Analogue of the Penrose Transform”, Ukr. Phys. J., 47 (2002), 288–292 | MR
[31] D. Shklyarov, S. Sinel'shchikov, L. Vaksman, “Hidden Symmetry of Some Algebras of $q$-Differential Operators”, Noncommutative Structures in Mathematics and Physics, NATO Sci. Ser., 22, eds. S. Duplij, J. Wess, Kluwer, Dordrecht–Boston–London, 2001, 309–320 | MR | Zbl
[32] D. Shklyarov, S. Sinel'shchikov, L. Vaksman, “Geometric Realizations for Some Series of Representations of the Quantum Group $SU_{2,2}$”, Mat. Fiz., Anal., Geom., 8 (2001), 90–110 | MR | Zbl
[33] D. Shklyarov, S. Sinel'shchikov, L. Vaksman, “Fock Representations and Quantum Matrices”, Intern. J. Math., 15:9 (2004), 1–40 | DOI | MR
[34] D. Shklyarov, G. Zhang, “A $q$-Analogue of the Berezin Transform on the Unit Ball”, J. Math. Phys., 44:9 (2003), 4344–4373 | DOI | MR | Zbl
[35] S. Sinel'shchikov, L. Vaksman, “Hidden Symmetry of the Differential Calculus on the Quantum Matrix Space”, J. Phys. A. Math. Gen., 30 (1997), L23–L26 | DOI | MR | Zbl
[36] S. Sinel'shchikov, L. Vaksman, “On $q$-Analogues of Bounded Symmetric Domains and Dolbeault Complexes”, Math. Phys., Anal., Geom., 1 (1998), 75–100 | DOI | MR | Zbl
[37] S. Sinel'shchikov, L. Vaksman, A. Stolin, “Spherical Principal Nondegenerate Series of Representations for the Quantum group $SU_{2,2}$”, Czechoslovak J. Phys., 51:12 (2001), 1431–1440 | DOI | MR | Zbl
[38] T. Tanisaki, “Killing Forms, Harish-Chandra Homomorphisms and Universal $R$-matrices for Quantum Algebras”, Infinite Analysis, eds. A. Tsuchiya, T. Eguchi, M. Jimbo, World Sci., Singapore ; Intern. J. Modern Phys. A. Suppl. 1B, 7 (1992), 941–962 | MR | Zbl | DOI
[39] L. Turowska, “Representations of a $q$-Analogue of the $*$-Algebra Pol(Mat$_{2,2}$)”, J. Phys. A. Math. Gen., 34 (2001), 2063–2070 | DOI | MR | Zbl
[40] L. L. Vaksman, “Integral Intertwining Operators and Quantum Homogeneous Spaces”, Theor. Math. Physics, 105 (1995), 355–363 | DOI | MR | Zbl
[41] L. L. Vaksman, “Quantum Matrix Ball: the Cauchy.Szegö Kernel and the Shilov Boundary”, Mat. Fiz., Anal., Geom., 8 (2001), 366–384 | MR | Zbl
[42] L. L. Vaksman, D. L. Shklyarov, “Integral Representations of Functions in the Quantum Disc I”, Mat. Fiz., Anal., Geom., 4:3 (1997), 286–308 (Russian) | MR | Zbl
[43] L. L. Vaksman, Ya. S. Soibelman, “Algebra of Functions on the Quantum Group $SU(n+1)$ and the Odd-Dimensional Quantum Spheres”, Algebra and Analysis, 2:5 (1990), 101–120 | MR | Zbl
[44] J. Wolf, “Fine Structure of Hermitian Symmetric Spaces”, Symmetric Spaces. Short Cources Presented at Washington University, eds. W. M. Boothby, G. L. Weiss, Marcel Dekker, Inc., New York ; Pure and Appl. Math., 8 (1972), 271–357 | MR | Zbl
[45] S. L. Woronowicz, “Compact Matrix Pseudogroups”, Commun. Math. Phys., 111 (1987), 613–665 | DOI | MR | Zbl