The Hardy–Littlewood theorem and the operator of harmonic conjugate in some classes of simply connected domains with rectifiable boundary
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009) no. 2, pp. 192-210 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{JMAG_2009_5_2_a4,
     author = {N. M. Tkachenko and F. A. Shamoyan},
     title = {The {Hardy{\textendash}Littlewood} theorem and the operator of harmonic conjugate in some classes of simply connected domains with rectifiable boundary},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {192--210},
     year = {2009},
     volume = {5},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2009_5_2_a4/}
}
TY  - JOUR
AU  - N. M. Tkachenko
AU  - F. A. Shamoyan
TI  - The Hardy–Littlewood theorem and the operator of harmonic conjugate in some classes of simply connected domains with rectifiable boundary
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2009
SP  - 192
EP  - 210
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2009_5_2_a4/
LA  - en
ID  - JMAG_2009_5_2_a4
ER  - 
%0 Journal Article
%A N. M. Tkachenko
%A F. A. Shamoyan
%T The Hardy–Littlewood theorem and the operator of harmonic conjugate in some classes of simply connected domains with rectifiable boundary
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2009
%P 192-210
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2009_5_2_a4/
%G en
%F JMAG_2009_5_2_a4
N. M. Tkachenko; F. A. Shamoyan. The Hardy–Littlewood theorem and the operator of harmonic conjugate in some classes of simply connected domains with rectifiable boundary. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009) no. 2, pp. 192-210. http://geodesic.mathdoc.fr/item/JMAG_2009_5_2_a4/

[1] P. Duren, Theory of $H^p$ Spaces, Acad. Press, New York, 1970 | MR

[2] J. Detraz, “Classes de Bergman de Functions Harmoniques”, Bull. Soc. Math. France, 109 (1981), 259–268 | MR | Zbl

[3] K. P. Isaev, R. S. Yulmukhametov, “Laplace Transformations of Functionals on Bergman's Spaces”, Izv. RAN. Ser. Math., 68 (2004), 5–42 (Russian) | DOI | MR | Zbl

[4] H. Hedenmalm, “The Dual of Bergman Space on Simply Connected Domains”, J. d'Analyse Mathematique, 88 (2002), 311–335 | DOI | MR | Zbl

[5] M. M. Dzhrbashyan, “On the Representation Problem of Analytic Functions”, Soob. Inst. Mat. i Mekh. AN ArmSSR, 2 (1948), 3–30 (Russian)

[6] F. A. Shamoyan, “The Diagonal Mapping and Problems of Representation of Functions Holomorphic in a Polydisk in Anisotropic Spaces”, Sib. Math. J., 31:2 (1990), 197–215 (Russian) | DOI | MR | Zbl

[7] Ch. Pommerenke, “Schlichte Functionen und Analytische Functionen von Beschrankter Mittlerer Oszillation”, Comment. Math. Helvetici, 52 (1977), 591–602 | DOI | MR | Zbl

[8] G. M. Golusin, The Geometrical Theory of Functions Complex Variable, Nauka, Moscow, 1966 (Russian)

[9] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton–New Jersey, 1970 | MR

[10] N. M. Tkachenko, “The Bounded Projections in Weight Spaces of Harmonic Functions in Angular Domains”, Vestnik Bryansk. Gos. Univ., 4 (2007), 116–122 (Russian) | MR

[11] F. A. Shamoyan, “On Applications of Dzhrbashyan Integral Representation in Some Problems in Analysis”, Dokl. Akad. Nauk SSSR, 261 (1981), 557–561 (Russian) | MR | Zbl

[12] A. A. Solov'ev, “About a Continuity in $L^p$ the Integral Operator with Bergman's Kernel”, Vestnik Len. Gos. Univ., 1978, no. 19, 77–80 (Russian) | MR | Zbl

[13] A. M. Shikhvatov, “About Spaces of Analytical Functions in the Domain of with an Angular Point”, Mat. Zametki, 18:3 (1975), 411–420 (Russian) | MR | Zbl