Parabolic foliations on three-manifolds
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009) no. 2, pp. 170-191
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that every closed orientable three-manifold admits a parabolic foliation.
@article{JMAG_2009_5_2_a3,
author = {V. Krouglov},
title = {Parabolic foliations on three-manifolds},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {170--191},
year = {2009},
volume = {5},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2009_5_2_a3/}
}
V. Krouglov. Parabolic foliations on three-manifolds. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009) no. 2, pp. 170-191. http://geodesic.mathdoc.fr/item/JMAG_2009_5_2_a3/
[1] A. A. Borisenko, “On the Foliations of Negative Extrinsic Curvature on the Compact Riemmanian Manifolds”, Mat. Zametki, 62:5 (1997), 673–676 | DOI | MR | Zbl
[2] D. V. Bolotov, “Hyperfoliations on Compact Three-Manifolds with the Restrictions on the Extrinsic Curvature of the Leaves”, Math. Notes, 63:5 (1998), 651–659 | DOI | MR | Zbl
[3] D. V. Bolotov, “Extrinsic Geometry of Foliations on Three-Manifolds”, Foliations 2005, World Sci. Publ., Hackensack, NJ, 2006, 109–120 | DOI | MR | Zbl
[4] B. B. Prasolov, A. B. Sosinsky, Knots, Links, Braids and Three-Manifolds, MCCME, 1997, 352 pp.
[5] V. V. Krouglov, “On the Curvature of Contact Structures and Foliations”, Notices Ukr. Acad. Sci., 7 (2008), 15–19 | MR