Simple periodic boundary data and Riemann–Hilbert problem for integrable model of the stimulated Raman scattering
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009) no. 1, pp. 82-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{JMAG_2009_5_1_a5,
     author = {E. A. Moskovchenko},
     title = {Simple periodic boundary data and {Riemann{\textendash}Hilbert} problem for integrable model of the stimulated {Raman} scattering},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {82--103},
     year = {2009},
     volume = {5},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2009_5_1_a5/}
}
TY  - JOUR
AU  - E. A. Moskovchenko
TI  - Simple periodic boundary data and Riemann–Hilbert problem for integrable model of the stimulated Raman scattering
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2009
SP  - 82
EP  - 103
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2009_5_1_a5/
LA  - en
ID  - JMAG_2009_5_1_a5
ER  - 
%0 Journal Article
%A E. A. Moskovchenko
%T Simple periodic boundary data and Riemann–Hilbert problem for integrable model of the stimulated Raman scattering
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2009
%P 82-103
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2009_5_1_a5/
%G en
%F JMAG_2009_5_1_a5
E. A. Moskovchenko. Simple periodic boundary data and Riemann–Hilbert problem for integrable model of the stimulated Raman scattering. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009) no. 1, pp. 82-103. http://geodesic.mathdoc.fr/item/JMAG_2009_5_1_a5/

[1] J. Leon, A. V. Mikhailov, “Raman Soliton Generation from Laser Inputs in SRS”, Phys. Lett. A, 253 (1999), 33–40 | DOI

[2] A. S. Fokas, C. R. Menyuk, “Integrability and Self-Similarity in Transient Stimulated Raman Scattering”, J. Nonlinear Sci., 9 (1999), 1–31 | DOI | MR | Zbl

[3] A. S. Fokas, “A Unified Transform Method for Solving Linear and Certain Nonlinear PDEs”, Proc. R. Soc. Lond. A, 453 (1997), 1411–1443 | DOI | MR | Zbl

[4] A. Boutet de Monvel, A. S. Fokas, D. G. Shepelsky The mKdV Equation on the Half-Line, J. Inst. Math., 3:2 (2004), 139–164 | MR | Zbl

[5] E. A. Moscovchenko, V. P. Kotlyarov, “A new Riemann–Hilbert Problem in a Model of Stimulated Raman Scattering”, J. Phys. A.: Math. Gen., 39 (2006), 14591–14610 | DOI | MR

[6] P. Deift, X. Zhou, “A Steepest Descent Method for Oscillatory Riemann–Hilbert Problems. Asymptotics for the MKdV Equation”, Ann. Math., 137 (1993), 295–368 | DOI | MR | Zbl

[7] E. Ya. Khruslov, V. P. Kotlyarov, “Generation of Asymptotic Solitons in an Integrable Model of Stimulated Raman Scattering by Periodic Boundary Data”, Mat. fiz., anal., geom., 10 (2003), 366–384 | MR | Zbl

[8] A. R. Its, V. E. Petrov, “ ‘Isomonodromic’' Solutions of the Sine–Gordon Equation and the Time Asymptotics of its Rapidly Decreasing Solutions”, Dokl. Akad. Nauk USSR, 265:6 (1982), 1302–1306 (Russian) | MR | Zbl

[9] A. Boutet de Monvel, V. P. Kotlyarov, “Scattering Problem for the Zakharov–Shabat Equations on the Semi-Axis”, Inverse Probl., 16 (2000), 1813–1837 | DOI | MR | Zbl

[10] A. Boutet de Monvel, V. Kotlyarov, “Focusing Nonlinear Schrödinger Equation on the Quarter Plane with Time-Periodic Boundary Condition: a Riemann–Hilbert Approach”, J. Inst. Math., 6:4 (2007), 579–611 | MR | Zbl

[11] L. D. Fadeev, L. Takhtadjan, Hamiltonian Methods in the Theory of Solitons, Springer, Berlin, 1987 | MR | Zbl

[12] X. Zhou, “Direct and Inverse Scattering Transform with Arbitrary Spectral Singularities”, Comm. Pure Appl. Math., 42 (1989), 895–938 | DOI | MR | Zbl

[13] P. Deift, A. Its, X. Zhou, “Long-time Asymptotics for Integrable NonlinearWave Equations”, Important Developments in Soliton Theory, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1993 | MR

[14] P. A. Deift, A. R. Its, X. Zhou, “A Riemann–Hilbert Approach to Asymptotic Problems Arising in the Theory of Random Matrix Models, and also in the Theory of Integrable Statistical Mechanics”, Ann. Math., 146 (1997), 149–235 | DOI | MR | Zbl