@article{JMAG_2009_5_1_a4,
author = {V. I. Khrabustovskyi},
title = {On the limit of regular dissipative and self-adjoint boundary value problems with nonseparated boundary conditions when an interval stretches to the semiaxis},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {54--81},
year = {2009},
volume = {5},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2009_5_1_a4/}
}
TY - JOUR AU - V. I. Khrabustovskyi TI - On the limit of regular dissipative and self-adjoint boundary value problems with nonseparated boundary conditions when an interval stretches to the semiaxis JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2009 SP - 54 EP - 81 VL - 5 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2009_5_1_a4/ LA - en ID - JMAG_2009_5_1_a4 ER -
%0 Journal Article %A V. I. Khrabustovskyi %T On the limit of regular dissipative and self-adjoint boundary value problems with nonseparated boundary conditions when an interval stretches to the semiaxis %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2009 %P 54-81 %V 5 %N 1 %U http://geodesic.mathdoc.fr/item/JMAG_2009_5_1_a4/ %G en %F JMAG_2009_5_1_a4
V. I. Khrabustovskyi. On the limit of regular dissipative and self-adjoint boundary value problems with nonseparated boundary conditions when an interval stretches to the semiaxis. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009) no. 1, pp. 54-81. http://geodesic.mathdoc.fr/item/JMAG_2009_5_1_a4/
[1] B. M. Levitan, “Proof of the Theorem on the Expansion in Eigenfunctions of Self- adjoint Differential Equations”, Dokl. Akad. Nauk SSSR, 73 (1950), 651–654 (Russian) | MR | Zbl
[2] Transl. AMS, 39, Providence, RI, 1975, 525 pp. | MR | Zbl | Zbl
[3] M. A. Naimark, “Investigation of the Spectrum and the Expansion in Eigenvalues of a Nonself-Adjoint Differential Operator Second Order on a Semi-Axis”, Tr. Moscow. Mat. Obsch., 3, 1954, 181–270 (Russian) | MR | Zbl
[4] AMS Transl. Ser. II, 72 (1968), 177–202 | DOI | MR | Zbl
[5] F. S. Rofe-Beketov, “Expansion in Eigenfunctions of Infinite Systems of Differential Equations in the Nonself-Adjoint and Self-Adjoint cases”, Mat. Sb., 51:3 (1960), 293–342 (Russian) | MR | Zbl
[6] F. Atkinson, Discrete and Continuous Boundary Problems, Acad. Press, New York–London, 1964 ; eds. I. S. Kats, M. G. Krein; Engl. Transl. of the Supplement I: AMS Transl. Ser. II, 103 (1974), 1–18; On Spectral Functions of a String, Mir, Moscow | MR | Zbl
[7] Proc. Roy. Soc. Edinburgh Sect. A, 74 (1975), 5–40 | MR
[8] S. A. Orlov, “The Structure of Resolvents and Spectral Functions of Unidimensional Linear Selfadjoined Singular Differential Operators of Order 2n”, Dokl. Akad. Nauk SSSR, 111:6 (1956), 1175–1177 (Russian) | MR | Zbl
[9] S. A. Orlov, “Description of the Green Functions of Canonical Differential Systems. I, II”, Teor. Funkts. Funkts. Anal. i Prilozh., 51, 1956, 78–88 ; 52, 33–39 (Russian); Engl. Transl.: J. Soviet Math., 52:5 (1990), 3372–3377 ; 6, 3500–3508 | MR | DOI | MR | Zbl
[10] Soviet Math. Dokl., 22:3 (1980), 795–799 | MR | Zbl
[11] F. S. Rofe-Beketov, A. M. Khol'kin, Spectral Analysis of Differential Operators, Interplay between Spectral and Oscillatory Properties, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005, 438 pp. | MR | Zbl
[12] L. A. Sakhnovich, Spectral Theory of Canonical Differential Systems. Method of Operator Identities, Birkhauser, Basel–Boston–Berlin, 1999 | MR | Zbl
[13] V. I. Khrabustovskyi, “On the Characteristic Operators and Projections and on the Solutions of Weyl Type of Dissipative and Accumulative Operator Systems. I. General Case”, J. Math. Phys., Anal., Geom., 2:2 (2006), 149–175 ; “II. Abstract Theory”, Ibid, no. 3, 299–317; “III. Separated Boundary Conditions”, Ibid, no. 4, 449–473 | MR
[14] Math. USSR. Izv., 10 (1976), 565–613 | DOI | MR | Zbl
[15] J. M. Ziman, Principles of the Theory of Solids, Cambridge Univ. Press, Cambridge, 1972 ; Mir, Moscow, 1974 | MR
[16] F. S. Rofe-Beketov, “Square-Integrable Solutions, Selfadjoint Extensions and Spectrum of Differential Systems. Differential Equations”, Proc. Intern. Conf., Uppsala, 1977
[17] Math. Notes, 24 (1979), 767–773 | DOI | MR | Zbl
[18] M. Lesch, M. Malamud, On the Number of Square Integrable Solutions and Selfadjointness of Symmeteric First Order Systems of Differential Equations, Prepr. Math. Inst. der Univ. zu Koln, Jan. 2001; 11 Dec. 2000, 50 pp., arXiv: math.FA/0012080 | MR
[19] A. Dijksma, de H. S. V. Snoo, “Self-Adjoint Extensions of Symmetric Subspaces”, Pacific J. Math., 54:1 (1974), 71–100 | DOI | MR | Zbl
[20] AMS Transl., 43, Providence, RI, 1974, 386 pp. | MR
[21] T. Kato, Perturbation Theory for Linear Operators, Repr. 1980 Ed., Classics in Mathematics, Springer-Verlag, Berlin, 619 pp. ; Mir, Moscow, 1972 | MR | Zbl
[22] V. I. Khrabustovskyi, “The Spectral Matrix of a Periodic Symmetric System with a Degenerate Weight on the Axis”, Teor. Funkts., Funkts. Anal. i Prilozh., 1981, no. 35, 111–119 (Russian) | MR
[23] V. I. Khrabustovskyi, “Eigenfunction Expansions of Periodic Systems with Weight”, Dokl. Akad. Nauk. UkrSSR. Ser. A, 1984, no. 5, 26–29 | MR
[24] J. Soviet Math., 48:5 (1990), 345–355 | DOI | MR
[25] V. A. Zolotarev, Analytic Methods of Spectral Representations of Nonself-Adjoint and Nonunitary Operators, Kharkiv National Univ., Kharkiv, 2003 (Russian)
[26] B. Sz.-Nagy, C. Foias, Analyse Harmonique des Operateurs de l'Espace de Hilbert, Masson et Cie, Paris; Akademiai Kiado, Budapest, 1967, 373 pp. (French) ; Engl. Transl.: Harmonic Analysis of Operators on Hilbert Space, North-Holland Publish. Co., Amsterdam–London; Amer. Elsevier Publish. Co., Inc., New York; Akademiai Kiado, Budapest, 1970, 389 pp. ; Ju. P. Ginzburg(ed), Mir, Moscow, 1970, a Foreword by M. G. Krein | Zbl | Zbl | MR
[27] V. P. Potapov, “On the Theory of the Weyl Matrix Circles”, Funct. Anal. and Appl. Math., 215 (1982), 113–121 | MR
[28] B. F. Bylov, R. E. Vinograd, D. M. Grobman, V. V. Nemyckii, Theory of Ljapunov Exponents and its Application to Problems of Stability, Nauka, Moscow, 1966 (Russian) | MR | Zbl
[29] V. I. Khrabustovskyi, “On Characteristic Matrix of Weyl–Titchmarsh Type for Differential Operator Equations which Contains the Spectral Parameter in Linear or Nevanlinna's Manner”, Mat. fiz., anal., geom., 2 (2003), 205–227 (Russian)