On the limit of regular dissipative and self-adjoint boundary value problems with nonseparated boundary conditions when an interval stretches to the semiaxis
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009) no. 1, pp. 54-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the symmetric differential system of the first order that contains a spectral parameter in Nevanlinna's manner the limit of regular boundary value problems with dissipative or accumulative nonseparated boundary conditions is studied when the interval stretches to the semiaxis. When for the considered system the case of the limit point takes place in one of the complex half-planes, we obtain the condition which guarantees the non- self-adjointness of the boundary condition at zero that corresponds to the limit boundary problem. This result is illustrated on the perturbed almost periodic systems. When the boundary condition in the prelimit regular problems is periodic, we show that the limit characteristic matrix is also the characteristic matrix on the whole axis if the coefficients of the system are extended in a certain way on the negative semiaxis. In the general case we find the condition when the convergence of characteristic matrixes implies the convergence of resolvents.
@article{JMAG_2009_5_1_a4,
     author = {V. I. Khrabustovskyi},
     title = {On the limit of regular dissipative and self-adjoint boundary value problems with nonseparated boundary conditions when an interval stretches to the semiaxis},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {54--81},
     year = {2009},
     volume = {5},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2009_5_1_a4/}
}
TY  - JOUR
AU  - V. I. Khrabustovskyi
TI  - On the limit of regular dissipative and self-adjoint boundary value problems with nonseparated boundary conditions when an interval stretches to the semiaxis
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2009
SP  - 54
EP  - 81
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2009_5_1_a4/
LA  - en
ID  - JMAG_2009_5_1_a4
ER  - 
%0 Journal Article
%A V. I. Khrabustovskyi
%T On the limit of regular dissipative and self-adjoint boundary value problems with nonseparated boundary conditions when an interval stretches to the semiaxis
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2009
%P 54-81
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2009_5_1_a4/
%G en
%F JMAG_2009_5_1_a4
V. I. Khrabustovskyi. On the limit of regular dissipative and self-adjoint boundary value problems with nonseparated boundary conditions when an interval stretches to the semiaxis. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009) no. 1, pp. 54-81. http://geodesic.mathdoc.fr/item/JMAG_2009_5_1_a4/

[1] B. M. Levitan, “Proof of the Theorem on the Expansion in Eigenfunctions of Self- adjoint Differential Equations”, Dokl. Akad. Nauk SSSR, 73 (1950), 651–654 (Russian) | MR | Zbl

[2] Transl. AMS, 39, Providence, RI, 1975, 525 pp. | MR | Zbl | Zbl

[3] M. A. Naimark, “Investigation of the Spectrum and the Expansion in Eigenvalues of a Nonself-Adjoint Differential Operator Second Order on a Semi-Axis”, Tr. Moscow. Mat. Obsch., 3, 1954, 181–270 (Russian) | MR | Zbl

[4] AMS Transl. Ser. II, 72 (1968), 177–202 | DOI | MR | Zbl

[5] F. S. Rofe-Beketov, “Expansion in Eigenfunctions of Infinite Systems of Differential Equations in the Nonself-Adjoint and Self-Adjoint cases”, Mat. Sb., 51:3 (1960), 293–342 (Russian) | MR | Zbl

[6] F. Atkinson, Discrete and Continuous Boundary Problems, Acad. Press, New York–London, 1964 ; eds. I. S. Kats, M. G. Krein; Engl. Transl. of the Supplement I: AMS Transl. Ser. II, 103 (1974), 1–18; On Spectral Functions of a String, Mir, Moscow | MR | Zbl

[7] Proc. Roy. Soc. Edinburgh Sect. A, 74 (1975), 5–40 | MR

[8] S. A. Orlov, “The Structure of Resolvents and Spectral Functions of Unidimensional Linear Selfadjoined Singular Differential Operators of Order 2n”, Dokl. Akad. Nauk SSSR, 111:6 (1956), 1175–1177 (Russian) | MR | Zbl

[9] S. A. Orlov, “Description of the Green Functions of Canonical Differential Systems. I, II”, Teor. Funkts. Funkts. Anal. i Prilozh., 51, 1956, 78–88 ; 52, 33–39 (Russian); Engl. Transl.: J. Soviet Math., 52:5 (1990), 3372–3377 ; 6, 3500–3508 | MR | DOI | MR | Zbl

[10] Soviet Math. Dokl., 22:3 (1980), 795–799 | MR | Zbl

[11] F. S. Rofe-Beketov, A. M. Khol'kin, Spectral Analysis of Differential Operators, Interplay between Spectral and Oscillatory Properties, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005, 438 pp. | MR | Zbl

[12] L. A. Sakhnovich, Spectral Theory of Canonical Differential Systems. Method of Operator Identities, Birkhauser, Basel–Boston–Berlin, 1999 | MR | Zbl

[13] V. I. Khrabustovskyi, “On the Characteristic Operators and Projections and on the Solutions of Weyl Type of Dissipative and Accumulative Operator Systems. I. General Case”, J. Math. Phys., Anal., Geom., 2:2 (2006), 149–175 ; “II. Abstract Theory”, Ibid, no. 3, 299–317; “III. Separated Boundary Conditions”, Ibid, no. 4, 449–473 | MR

[14] Math. USSR. Izv., 10 (1976), 565–613 | DOI | MR | Zbl

[15] J. M. Ziman, Principles of the Theory of Solids, Cambridge Univ. Press, Cambridge, 1972 ; Mir, Moscow, 1974 | MR

[16] F. S. Rofe-Beketov, “Square-Integrable Solutions, Selfadjoint Extensions and Spectrum of Differential Systems. Differential Equations”, Proc. Intern. Conf., Uppsala, 1977

[17] Math. Notes, 24 (1979), 767–773 | DOI | MR | Zbl

[18] M. Lesch, M. Malamud, On the Number of Square Integrable Solutions and Selfadjointness of Symmeteric First Order Systems of Differential Equations, Prepr. Math. Inst. der Univ. zu Koln, Jan. 2001; 11 Dec. 2000, 50 pp., arXiv: math.FA/0012080 | MR

[19] A. Dijksma, de H. S. V. Snoo, “Self-Adjoint Extensions of Symmetric Subspaces”, Pacific J. Math., 54:1 (1974), 71–100 | DOI | MR | Zbl

[20] AMS Transl., 43, Providence, RI, 1974, 386 pp. | MR

[21] T. Kato, Perturbation Theory for Linear Operators, Repr. 1980 Ed., Classics in Mathematics, Springer-Verlag, Berlin, 619 pp. ; Mir, Moscow, 1972 | MR | Zbl

[22] V. I. Khrabustovskyi, “The Spectral Matrix of a Periodic Symmetric System with a Degenerate Weight on the Axis”, Teor. Funkts., Funkts. Anal. i Prilozh., 1981, no. 35, 111–119 (Russian) | MR

[23] V. I. Khrabustovskyi, “Eigenfunction Expansions of Periodic Systems with Weight”, Dokl. Akad. Nauk. UkrSSR. Ser. A, 1984, no. 5, 26–29 | MR

[24] J. Soviet Math., 48:5 (1990), 345–355 | DOI | MR

[25] V. A. Zolotarev, Analytic Methods of Spectral Representations of Nonself-Adjoint and Nonunitary Operators, Kharkiv National Univ., Kharkiv, 2003 (Russian)

[26] B. Sz.-Nagy, C. Foias, Analyse Harmonique des Operateurs de l'Espace de Hilbert, Masson et Cie, Paris; Akademiai Kiado, Budapest, 1967, 373 pp. (French) ; Engl. Transl.: Harmonic Analysis of Operators on Hilbert Space, North-Holland Publish. Co., Amsterdam–London; Amer. Elsevier Publish. Co., Inc., New York; Akademiai Kiado, Budapest, 1970, 389 pp. ; Ju. P. Ginzburg(ed), Mir, Moscow, 1970, a Foreword by M. G. Krein | Zbl | Zbl | MR

[27] V. P. Potapov, “On the Theory of the Weyl Matrix Circles”, Funct. Anal. and Appl. Math., 215 (1982), 113–121 | MR

[28] B. F. Bylov, R. E. Vinograd, D. M. Grobman, V. V. Nemyckii, Theory of Ljapunov Exponents and its Application to Problems of Stability, Nauka, Moscow, 1966 (Russian) | MR | Zbl

[29] V. I. Khrabustovskyi, “On Characteristic Matrix of Weyl–Titchmarsh Type for Differential Operator Equations which Contains the Spectral Parameter in Linear or Nevanlinna's Manner”, Mat. fiz., anal., geom., 2 (2003), 205–227 (Russian)

[30] Sb. Math., 24:1 (1974), 103–126 | DOI | MR | Zbl