Retroreflecting curves in nonstandard analysis
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009) no. 1, pp. 12-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a direct construction of retroreecting curves by means of Nonstandard Analysis. We construct non self-intersecting curves which are of class $C^1$, except for a hyper-nite set of values, such that the probability of a particle being reected from the curve with the velocity opposite to the velocity of incidence, is innitely close to 1. The constructed curves are of two kinds: a curve innitely close to a straight line and a curve innitely close to the boundary of a bounded convex set. We shall see that the latter curve is a solution of the problem: nd the curve of maximum resistance innitely close to a given curve.
@article{JMAG_2009_5_1_a1,
     author = {R. Almeida and V. Neves and A. Plakhov},
     title = {Retroreflecting curves in nonstandard analysis},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {12--24},
     year = {2009},
     volume = {5},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2009_5_1_a1/}
}
TY  - JOUR
AU  - R. Almeida
AU  - V. Neves
AU  - A. Plakhov
TI  - Retroreflecting curves in nonstandard analysis
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2009
SP  - 12
EP  - 24
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2009_5_1_a1/
LA  - en
ID  - JMAG_2009_5_1_a1
ER  - 
%0 Journal Article
%A R. Almeida
%A V. Neves
%A A. Plakhov
%T Retroreflecting curves in nonstandard analysis
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2009
%P 12-24
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2009_5_1_a1/
%G en
%F JMAG_2009_5_1_a1
R. Almeida; V. Neves; A. Plakhov. Retroreflecting curves in nonstandard analysis. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009) no. 1, pp. 12-24. http://geodesic.mathdoc.fr/item/JMAG_2009_5_1_a1/

[1] F. Bagarello, S. Valenti, “Nonstandard Analysis in Classical Physics and Quantum Formal Scattering”, Intern. J. Theoret. Phys., 27 (1988), 557–566 | DOI | Zbl

[2] F. Bagarello, “Nonstandard Variational Calculus with Applications to Classical Mechanics. 1. An Existence Criterion”, Intern. J. Theoret. Phys., 38 (1999), 1569–1592 | DOI | MR | Zbl

[3] F. Bagarello, “Nonstandard Variational Calculus with Applications to Classical Mechanics. 2. The Inverse Problem and More”, Intern. J. Theoret. Phys., 38 (1999), 1593–1615 | DOI | MR | Zbl

[4] A. E. Hurd, P. A. Loeb, An Introduction to Nonstandard Real Analysis, Pure and Appl. Math., 118, Acad. Press, Inc., Orlando etc., 1995 | MR

[5] A. Y. Plakhov, “Billiards Inverting the Direction of Particles' Motion”, Russian Math. Surveys, 61:1 (2006), 179–180 | DOI | MR | Zbl

[6] A. Y. Plakhov, P. F. Gouveia, “Problems of Maximal Mean Resistance on the Plane”, Nonlinearity, 20 (2007), 2271–2287 | DOI | MR | Zbl

[7] K. D. Stroyan, W. A. J. Luxemburg, Introduction to the Theory of Infinitesimals, Pure and Appl. Math., 72, Acad. Press, New York–London, 1976 | MR | Zbl