Multi-term asymptotic representations of the Riesz measure of subharmonic functions in the plane
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009) no. 1, pp. 3-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, a multi-term asymptotic representation for distribution function of the Riesz measure of subharmonic function in the plane is considered. It is shown that the “smallness” of the reminder term of asymptotic representation does not guarantee the bounded variation with respect to the angle variable of all terms of this asymptotics, and the conditions for this property to be held are given.
@article{JMAG_2009_5_1_a0,
     author = {P. Agranovich},
     title = {Multi-term asymptotic representations of the {Riesz} measure of subharmonic functions in the plane},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {3--11},
     year = {2009},
     volume = {5},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2009_5_1_a0/}
}
TY  - JOUR
AU  - P. Agranovich
TI  - Multi-term asymptotic representations of the Riesz measure of subharmonic functions in the plane
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2009
SP  - 3
EP  - 11
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2009_5_1_a0/
LA  - en
ID  - JMAG_2009_5_1_a0
ER  - 
%0 Journal Article
%A P. Agranovich
%T Multi-term asymptotic representations of the Riesz measure of subharmonic functions in the plane
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2009
%P 3-11
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2009_5_1_a0/
%G en
%F JMAG_2009_5_1_a0
P. Agranovich. Multi-term asymptotic representations of the Riesz measure of subharmonic functions in the plane. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (2009) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/JMAG_2009_5_1_a0/

[1] P. Z. Agranovich, V. N. Logvinenko, “Multi-Term Asymptotic Representation of a Subharmonic Function in the Plane”, Sib. Mat. J., 32:1 (1991), 1–16 (Russian) | DOI | MR | Zbl

[2] P. Z. Agranovich, V. N. Logvinenko, “Exceptional Sets for Entire Functions”, Mat. Stud., 13:2 (2000), 149–156 | MR | Zbl

[3] V. Azarin, “On the Polynomial Asymptotics of Subharmonic Functions of Finite Order and their Mass Distributions”, J. Math. Phys., Algebra, Geom., 3:1 (2007), 5–12 | MR | Zbl

[4] B. Ja. Levin, Distribution of Zeros of Entire Functions, AMS, Providence, RI, 1980 | MR | Zbl

[5] G. Pólya, G. Szegö, Problems and Theorems in Analysis, Springer-Verlag, Berlin, 1998

[6] L. I. Ronkin, Functions of Completely Regular Growth of Several Variables, Kluwer Acad. Publ., Dordrecht, 1992 | MR | Zbl