Ruled surfaces in $E^4$ with constant ratio of the Gaussian curvature and Gaussian torsion
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008) no. 3, pp. 371-379
Cet article a éte moissonné depuis la source Math-Net.Ru
Local and global existence theorems on the ruled surfaces with a constant ratio of the Gaussian curvature and Gaussian torsion are proved.
@article{JMAG_2008_4_3_a3,
author = {O. A. Goncharova},
title = {Ruled surfaces in $E^4$ with constant ratio of the {Gaussian} curvature and {Gaussian} torsion},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {371--379},
year = {2008},
volume = {4},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2008_4_3_a3/}
}
TY - JOUR AU - O. A. Goncharova TI - Ruled surfaces in $E^4$ with constant ratio of the Gaussian curvature and Gaussian torsion JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2008 SP - 371 EP - 379 VL - 4 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2008_4_3_a3/ LA - en ID - JMAG_2008_4_3_a3 ER -
O. A. Goncharova. Ruled surfaces in $E^4$ with constant ratio of the Gaussian curvature and Gaussian torsion. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008) no. 3, pp. 371-379. http://geodesic.mathdoc.fr/item/JMAG_2008_4_3_a3/
[1] Yu. A. Aminov, “Surfaces in $E^4$ with Gaussian Curvature Coinciding with Gaussian Torsion up to the Sign”, Math. Notes, 56:6 (1994), 1211–1215 | DOI | MR | Zbl
[2] O. A. Goncharova, “Ruled surfaces in $E^n$”, J. Math. Phys., Anal., Geom., 2 (2006), 40–61 (Russian) | MR | Zbl
[3] Yu. A. Aminov, Differential Geometry and Topology of Curves, Gordon and Breach Sci. Publ., Amsterdam, 2000 | MR
[4] O. A. Goncharova, “Standard Ruled Surfaces in $E^n$”, Dop. NAN Ukr., 3 (2006), 7–12 (Russian) | MR | Zbl