@article{JMAG_2008_4_2_a6,
author = {G. M. Sklyar and G. Szkibiel},
title = {Controllability from rest to arbitrary position of the nonhomogeneous {Timoshenko} beam},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {305--318},
year = {2008},
volume = {4},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2008_4_2_a6/}
}
TY - JOUR AU - G. M. Sklyar AU - G. Szkibiel TI - Controllability from rest to arbitrary position of the nonhomogeneous Timoshenko beam JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2008 SP - 305 EP - 318 VL - 4 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2008_4_2_a6/ LA - en ID - JMAG_2008_4_2_a6 ER -
G. M. Sklyar; G. Szkibiel. Controllability from rest to arbitrary position of the nonhomogeneous Timoshenko beam. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008) no. 2, pp. 305-318. http://geodesic.mathdoc.fr/item/JMAG_2008_4_2_a6/
[1] S. A. Avdonin, S. S. Ivanov, Families of Exponentials, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[2] S. A. Avdonin, S. S. Ivanov, “Riesz Bases of Exponentials and Divided Differences”, Russian Sci. Acad., 13:3 (2001), 1–17 (Russian) | MR
[3] J. B. Conway, A Course in Functional Analysis, Springer-Verlag, New York, 1990 | MR | Zbl
[4] G. M. Fichtenholz, Lectures on Differential Calculus, v. III, Fizmatgiz, Moscow–Leningrad, 1960 (Russian)
[5] V. I. Korobov, W. Krabs, G. M. Sklyar, “On the Solvability of Trigonometric Moment Problems Arising in the Problem of Controllability of Rotating Beams”, Intern. Ser. Numer. Math., 139 (2001), 145–156 | MR
[6] W. Krabs, On Moment Theory and Controllability of One Dimensional Vibrating Systems and Heating Processes, Lecture Notes in Control and Information Sciences, 173, Springer-Verlag, Berlin–Heidelberg–Budapest, 1992 | DOI | MR | Zbl
[7] W. Krabs, G. M. Sklyar, On Controllability of Linear Vibrations, Nova Science Publishers, Inc., Huntington–New York, 2002
[8] W. Krabs, G. M. Sklyar, J. Woźniak, “On the Set of Reachable States in the Problem of Controllability of Rotating Timoshenko Beams”, Z. Anal. und ihre Anwendungen, 22:1 (2003), 215–228 | DOI | MR | Zbl
[9] R. E. A. C. Paley, N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc., Providence, RI, 1934 ; 3rd printing, 1978 | MR
[10] M. A. Shubov, “Asymptotic and Spectral Analysis of the Spatially Nonhomogeneous Timoshenko Beam Model”, Math. Nachr., 241 (2002), 125–162 | 3.0.CO;2-3 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[11] M. A. Shubov, “Exact Controllability of Damped Timoshenko Beam”, IMA J. Math. Contr. Inform., 17 (2000), 375–395 | DOI | MR | Zbl
[12] M. A. Shubov, “Spectral Operators Generated by Timoshenko Beam Model”, Syst. and Contr. Lett., 38 (1999) | DOI | MR | Zbl
[13] G. M. Sklyar, G. Szkibiel, “Spectral Properties of Nonhomogeneous Timoshenko Beam and its Rest to Rest Controllability”, J. Math. Appl., 338 (2008), 1054–1069 | MR | Zbl
[14] D. Ullrich, “Divided Differences and Systems of Nonharmonic Fourier Series”, Proc. Amer. Math. Soc., 80 (1980), 47–57 | DOI | MR | Zbl
[15] F. Woittennek, J. Rudolph, “Motion Planning and Boundary Control for a Rotating Timoshenko Beam”, Proc. Appl. Math. Mech., 2 (2003), 106–107 | DOI | Zbl