Controllability from rest to arbitrary position of the nonhomogeneous Timoshenko beam
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008) no. 2, pp. 305-318 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The controllability of a slowly rotating beam clamped to a disc is considered. It is assumed that at the beginning the beam remains at the position of rest and it is supposed to rotate by the given angle to achieve a desired position. The movement is governed by the system of two differential equations with nonhomogeneous coefficients: mass density, rotary inertia, flexural rigidity and shear stiffness. The problem of controllability is reduced to the moment problem that is, in turn, solved with the use of the asymptotics of the spectrum of the operator connected with the movement.
@article{JMAG_2008_4_2_a6,
     author = {G. M. Sklyar and G. Szkibiel},
     title = {Controllability from rest to arbitrary position of the nonhomogeneous {Timoshenko} beam},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {305--318},
     year = {2008},
     volume = {4},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2008_4_2_a6/}
}
TY  - JOUR
AU  - G. M. Sklyar
AU  - G. Szkibiel
TI  - Controllability from rest to arbitrary position of the nonhomogeneous Timoshenko beam
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2008
SP  - 305
EP  - 318
VL  - 4
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2008_4_2_a6/
LA  - en
ID  - JMAG_2008_4_2_a6
ER  - 
%0 Journal Article
%A G. M. Sklyar
%A G. Szkibiel
%T Controllability from rest to arbitrary position of the nonhomogeneous Timoshenko beam
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2008
%P 305-318
%V 4
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2008_4_2_a6/
%G en
%F JMAG_2008_4_2_a6
G. M. Sklyar; G. Szkibiel. Controllability from rest to arbitrary position of the nonhomogeneous Timoshenko beam. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008) no. 2, pp. 305-318. http://geodesic.mathdoc.fr/item/JMAG_2008_4_2_a6/

[1] S. A. Avdonin, S. S. Ivanov, Families of Exponentials, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[2] S. A. Avdonin, S. S. Ivanov, “Riesz Bases of Exponentials and Divided Differences”, Russian Sci. Acad., 13:3 (2001), 1–17 (Russian) | MR

[3] J. B. Conway, A Course in Functional Analysis, Springer-Verlag, New York, 1990 | MR | Zbl

[4] G. M. Fichtenholz, Lectures on Differential Calculus, v. III, Fizmatgiz, Moscow–Leningrad, 1960 (Russian)

[5] V. I. Korobov, W. Krabs, G. M. Sklyar, “On the Solvability of Trigonometric Moment Problems Arising in the Problem of Controllability of Rotating Beams”, Intern. Ser. Numer. Math., 139 (2001), 145–156 | MR

[6] W. Krabs, On Moment Theory and Controllability of One Dimensional Vibrating Systems and Heating Processes, Lecture Notes in Control and Information Sciences, 173, Springer-Verlag, Berlin–Heidelberg–Budapest, 1992 | DOI | MR | Zbl

[7] W. Krabs, G. M. Sklyar, On Controllability of Linear Vibrations, Nova Science Publishers, Inc., Huntington–New York, 2002

[8] W. Krabs, G. M. Sklyar, J. Woźniak, “On the Set of Reachable States in the Problem of Controllability of Rotating Timoshenko Beams”, Z. Anal. und ihre Anwendungen, 22:1 (2003), 215–228 | DOI | MR | Zbl

[9] R. E. A. C. Paley, N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc., Providence, RI, 1934 ; 3rd printing, 1978 | MR

[10] M. A. Shubov, “Asymptotic and Spectral Analysis of the Spatially Nonhomogeneous Timoshenko Beam Model”, Math. Nachr., 241 (2002), 125–162 | 3.0.CO;2-3 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[11] M. A. Shubov, “Exact Controllability of Damped Timoshenko Beam”, IMA J. Math. Contr. Inform., 17 (2000), 375–395 | DOI | MR | Zbl

[12] M. A. Shubov, “Spectral Operators Generated by Timoshenko Beam Model”, Syst. and Contr. Lett., 38 (1999) | DOI | MR | Zbl

[13] G. M. Sklyar, G. Szkibiel, “Spectral Properties of Nonhomogeneous Timoshenko Beam and its Rest to Rest Controllability”, J. Math. Appl., 338 (2008), 1054–1069 | MR | Zbl

[14] D. Ullrich, “Divided Differences and Systems of Nonharmonic Fourier Series”, Proc. Amer. Math. Soc., 80 (1980), 47–57 | DOI | MR | Zbl

[15] F. Woittennek, J. Rudolph, “Motion Planning and Boundary Control for a Rotating Timoshenko Beam”, Proc. Appl. Math. Mech., 2 (2003), 106–107 | DOI | Zbl