@article{JMAG_2008_4_2_a3,
author = {Jan Milewski},
title = {An invariant form of the {Euler0-Lagrange} operator},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {267--277},
year = {2008},
volume = {4},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2008_4_2_a3/}
}
Jan Milewski. An invariant form of the Euler0-Lagrange operator. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008) no. 2, pp. 267-277. http://geodesic.mathdoc.fr/item/JMAG_2008_4_2_a3/
[1] B. S. DeWitt, Dynamical Theory of Groups and Fields, Gordon and Breach, New York, 1965 | MR
[2] W. M. Tulczyjew, “The Euler–Lagrange Resolution”, Diff. Geom. Meth. Math. Phys., Lect. Notes Math., 836, ed. P. L. Garcia et all., Salamanca, 1979, 22–48 | DOI | MR
[3] H. Goldschmidt, S. Sternberg, “The Hamilton–Cartan Formalism of Variations”, Ann. Inst. Fourier Grenoble, 23:1 (1973), 203–267 | DOI | MR | Zbl
[4] M. J. Munoz, M. E. Rosado Maria, “Invariant Variational Problem on Linear Frame Bundles”, J. Phys. A, 35:8 (2002), 2013 | DOI | MR | Zbl
[5] I. A. Kogan, P. J. Olver, “Invariant Euler–Lagrange Equations and Invariant Variational Bicomplex”, Acta Appl. Math., 76:2 (2003), 137 | DOI | MR | Zbl
[6] J. F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach, New York, 1978 | MR | Zbl
[7] A. M. Vinogradov, I. S. Krasilschik, V. V. Lytchagin, Introducion to Geometry of Nonlinear Differential Equations, Nauka, Moscow, 1986 (Russian) | MR