Solving of partial differential equations under minimal conditions
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008) no. 2, pp. 252-266 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{JMAG_2008_4_2_a2,
     author = {V. K. Maslyuchenko},
     title = {Solving of partial differential equations under minimal conditions},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {252--266},
     year = {2008},
     volume = {4},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2008_4_2_a2/}
}
TY  - JOUR
AU  - V. K. Maslyuchenko
TI  - Solving of partial differential equations under minimal conditions
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2008
SP  - 252
EP  - 266
VL  - 4
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2008_4_2_a2/
LA  - en
ID  - JMAG_2008_4_2_a2
ER  - 
%0 Journal Article
%A V. K. Maslyuchenko
%T Solving of partial differential equations under minimal conditions
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2008
%P 252-266
%V 4
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2008_4_2_a2/
%G en
%F JMAG_2008_4_2_a2
V. K. Maslyuchenko. Solving of partial differential equations under minimal conditions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008) no. 2, pp. 252-266. http://geodesic.mathdoc.fr/item/JMAG_2008_4_2_a2/

[1] R. Baire, “Sur les Fonctions de Variables Reelles”, Ann. Mat. Pura Appl. Ser. 3.3, 1899, 1–123 | DOI | Zbl

[2] P. R. Chernoff, H. F. Royden, “The Equation $\frac{\partial f}{\partial x}= \frac{\partial f}{\partial y}$”, Amer. Math. Monthly, 82:5 (1975), 530–531 | DOI | MR

[3] V. K. Maslyuchenko, “One Property of Partial Derivatives”, Ukr. Mat. Zh., 39:4 (1987), 529–531 (Russian) | MR | Zbl

[4] A. M. Bruckner, G. Petruska, O. Preiss, B. S. Thomson, “The Equation $u_xu_y=0$ Factors”, Acta Math. Hung., 57:3–4 (1991), 275–278 | DOI | MR | Zbl

[5] A. K. Kalancha, V. K. Maslyuchenko, “A Generalization of Bruckner–Petruska–Preiss–Thomson Theorem”, Mat. Stud., 1:1 (1999), 48–52 (Ukrainian) | MR | Zbl

[6] K. Bögel, “Über partiell differenzierbare Funktionen”, Mat. Z., 25 (1926), 490–498 | DOI | MR | Zbl

[7] V. H. Herasymchuk, V. K. Maslyuchenko, V. V. Mykhaylyuk, “Varieties of Lipschitz Condition and Discontinuity Points Sets of Separately Differentiable Functions”, Nauk. Visn. Cherniv. Univ. Vyp. Matematyka, 134, Ruta, Chernivtsi, 2002, 22–29 (Ukrainian)