Solution to the homogeneous boundary value problems of free vibrations of a finite string
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008) no. 2, pp. 237-251 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper solutions to the homogeneous boundary value problems of free vibrations of a finite string are obtained in the d'Alembert form. The initial boundary value problems to vibrations of a string with free ends as well as with one end fixed and one free are solved.
@article{JMAG_2008_4_2_a1,
     author = {P. G. Dolya},
     title = {Solution to the homogeneous boundary value problems of free vibrations of a finite string},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {237--251},
     year = {2008},
     volume = {4},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2008_4_2_a1/}
}
TY  - JOUR
AU  - P. G. Dolya
TI  - Solution to the homogeneous boundary value problems of free vibrations of a finite string
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2008
SP  - 237
EP  - 251
VL  - 4
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2008_4_2_a1/
LA  - en
ID  - JMAG_2008_4_2_a1
ER  - 
%0 Journal Article
%A P. G. Dolya
%T Solution to the homogeneous boundary value problems of free vibrations of a finite string
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2008
%P 237-251
%V 4
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2008_4_2_a1/
%G en
%F JMAG_2008_4_2_a1
P. G. Dolya. Solution to the homogeneous boundary value problems of free vibrations of a finite string. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008) no. 2, pp. 237-251. http://geodesic.mathdoc.fr/item/JMAG_2008_4_2_a1/

[1] A. N. Tikhonov, A. A. Samarskii, Equations of Mathematical Physics, Dover Publ., New York, 1990 | MR

[2] P. G. Dolya, “Periodic Continuation of Functions and Solution of the String Vibration Equation in Systems of Symbol Mathematics”, Bul. V.N. Karazin Kharkiv Nat. Univ., Ser. Math. Modelling. Information Technology. Automated Control Systems, 5:733 (2006), 106–116 (Russian)

[3] V. M. Babich, M. B. Kapilevich, S. G. Mihlin, G. I. Natanson, P. M. Riz, L. N. Slobodeckiy, M. M. Smirnov, Linear Equations of Mathematical Physics, Ref. Math. Library, ed. S. G. Mihlin, Nauka, Moscow, 1964 (Russian) | MR