Solution to the homogeneous boundary value problems of free vibrations of a finite string
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008) no. 2, pp. 237-251
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper solutions to the homogeneous boundary value problems of free vibrations of a finite string are obtained in the d'Alembert form. The initial boundary value problems to vibrations of a string with free ends as well as with one end fixed and one free are solved.
@article{JMAG_2008_4_2_a1,
author = {P. G. Dolya},
title = {Solution to the homogeneous boundary value problems of free vibrations of a finite string},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {237--251},
year = {2008},
volume = {4},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2008_4_2_a1/}
}
TY - JOUR AU - P. G. Dolya TI - Solution to the homogeneous boundary value problems of free vibrations of a finite string JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2008 SP - 237 EP - 251 VL - 4 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2008_4_2_a1/ LA - en ID - JMAG_2008_4_2_a1 ER -
P. G. Dolya. Solution to the homogeneous boundary value problems of free vibrations of a finite string. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008) no. 2, pp. 237-251. http://geodesic.mathdoc.fr/item/JMAG_2008_4_2_a1/
[1] A. N. Tikhonov, A. A. Samarskii, Equations of Mathematical Physics, Dover Publ., New York, 1990 | MR
[2] P. G. Dolya, “Periodic Continuation of Functions and Solution of the String Vibration Equation in Systems of Symbol Mathematics”, Bul. V.N. Karazin Kharkiv Nat. Univ., Ser. Math. Modelling. Information Technology. Automated Control Systems, 5:733 (2006), 106–116 (Russian)
[3] V. M. Babich, M. B. Kapilevich, S. G. Mihlin, G. I. Natanson, P. M. Riz, L. N. Slobodeckiy, M. M. Smirnov, Linear Equations of Mathematical Physics, Ref. Math. Library, ed. S. G. Mihlin, Nauka, Moscow, 1964 (Russian) | MR