Scattering from sparse potentials on graphs
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008) no. 1, pp. 151-170 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{JMAG_2008_4_1_a7,
     author = {Ph. Poulin},
     title = {Scattering from sparse potentials on graphs},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {151--170},
     year = {2008},
     volume = {4},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2008_4_1_a7/}
}
TY  - JOUR
AU  - Ph. Poulin
TI  - Scattering from sparse potentials on graphs
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2008
SP  - 151
EP  - 170
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2008_4_1_a7/
LA  - en
ID  - JMAG_2008_4_1_a7
ER  - 
%0 Journal Article
%A Ph. Poulin
%T Scattering from sparse potentials on graphs
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2008
%P 151-170
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2008_4_1_a7/
%G en
%F JMAG_2008_4_1_a7
Ph. Poulin. Scattering from sparse potentials on graphs. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008) no. 1, pp. 151-170. http://geodesic.mathdoc.fr/item/JMAG_2008_4_1_a7/

[1] M. Aizenman, “Localization at Weak Disorder: Some Elementary Bounds”, Rev. Math. Phys., 6 (1994), 1163–1182 | DOI | MR | Zbl

[2] M. Aizenman, G. M. Graf, “Localization Bounds for an Electron Gas”, J. Phys. A: Math. Gen., 31 (1998), 6783–6806 | DOI | MR | Zbl

[3] M. Aizenman, S. Molchanov, “Localization at Large Disorder and at Extreme Energies: an Elementary Derivation”, Comm. Math. Phys., 157 (1993), 245–278 | DOI | MR | Zbl

[4] P. W. Anderson, “Absence of Diffusion in Certain Random Lattices”, Phys. Rev., 109 (1958), 1492–1505 | DOI

[5] G. M. Graf, “Anderson Localization and the Space-Time Characteristic of Continuum States”, J. Stat. Phys., 75 (1994), 337–346 | DOI | MR | Zbl

[6] D. Hundertmark, W. Kirsch, “Spectral Theory of Sparse Potentials”, Stochastic Processes, Physics and Geometry: New Interplays, I, CMS Conf. Proc., 28, 2000, 213–238 | MR | Zbl

[7] V. Jakšić, Y. Last, “Corrugated Surfaces and A. C. Spectrum”, Rev. Math. Phys., 12 (2000), 1465–1503 | MR | Zbl

[8] V. Jakšić, Y. Last, “Spectral Structure of Anderson Type Hamiltonians”, Invent. Math., 141 (2000), 561–577 | DOI | MR | Zbl

[9] V. Jakšić, Y. Last, “Scattering from Subspace Potentials for Schrödinger Operators on Graphs”, Markov Proc. and Rel. Fields, 9 (2003), 661–674 | MR | Zbl

[10] V. Jakšić, Y. Last, “Simplicity of Singular Spectrum in Anderson Type Hamiltonians”, Duke Math. J., 133 (2006), 185–204 | DOI | MR | Zbl

[11] V. Jakšić, S. Molchanov, “Localization of Surface Spectra”, Comm. Math. Phys., 208 (1999), 153–172 | DOI | MR | Zbl

[12] W. Kirsch, “Scattering Theory for Sparse Random Potentials”, Random Oper. and Stoch. Eqs., 10 (2002), 329–334 | DOI | MR | Zbl

[13] M. Krishna, “Absolutely Continuous Spectrum for Sparse Potentials”, Proc. Indian Acad. Sci. (Math. Sci.), 103 (1993), 333–339 | DOI | MR | Zbl

[14] M. Krishna, J. Obermeit, Localization and Mobility Edge for Sparsely Random Potentials, IMSc Preprint, 1998, arXiv: math-ph/9805015v2

[15] S. Molchanov, “Lectures on Random Media”, Lect. Prob. Theory, Lect. Notes Math., 1581, 1994, 242–411 | DOI | MR | Zbl

[16] S. Molchanov, “Multiscattering on Sparse Bumps”, Advances in Differential Equations and Mathematical Physics, Cont. Math., 217, 1998, 157–182 | DOI | MR

[17] S. Molchanov, B. Vainberg, “Scattering on the System of the Sparse Bumps: Multidimensional Case”, Appl. Anal., 71 (1999), 167–185 | DOI | MR | Zbl

[18] S. Molchanov, B. Vainberg, “Multiscattering by Sparse Scatterers”, Mathematical and Numerical Aspects of Wave Propagation, SIAM, 2000, 518–522 | MR | Zbl

[19] S. Molchanov, B. Vainberg, “Spectrum of Multidimensional Schrödinger Operators with Sparse Potentials”, Anal. and Comp. Meth. Scattering and Appl. Math., 417 (2000), 231–254 | MR | Zbl

[20] L. Pastur, A. Figotin, Spectra of Random and Almost-Periodic Operators, Springer-Verlag, Berlin, 1992 | MR

[21] D. Pearson, “Singular Continuous Measures in Scattering Theory”, Comm. Math. Phys., 60 (1978), 13–36 | DOI | MR | Zbl

[22] P. Poulin, “The Molchanov–Vainberg Laplacian”, Proc. Amer. Math. Soc., 135 (2007), 77–85 | DOI | MR | Zbl

[23] P. Poulin, Random Schrödinger Operators of Anderson Type with Generalized Laplacians and Sparse Potentials, Ph.D. Thesis, McGill Univ., Montréal, 2006 | MR

[24] P. Poulin, “Green's Functions of Generalized Laplacians”, Probability and Mathematical Physics, a Volume in Honor of Stanislas Molchanov, CRM Proc. and Lect. Notes, 42, 2007, 417–452 | MR | Zbl

[25] M. Reed, B. Simon Methods of Modern Mathematical Physics, v. IV, Analysis of Operators, Acad. Press, New York, 1978

[26] W. Shaban, B. Vainberg, “Radiation Conditions for the Difference Schrödinger Operators”, Appl. Anal., 80 (2002), 525–556 | DOI | MR

[27] B. Simon, T. Wolff, “Singular Continuous Spectrum under Rank One Perturbations and Localization for Random Hamiltonians”, Comm. Pure and Appl. Math., 39 (1986), 75–90 | DOI | MR | Zbl

[28] E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993 | MR | Zbl

[29] B. Vainberg, Asymptotic Methods in Equations of Mathematical Physics, Gordon and Breach Sci. Publ., New York, 1989 | MR | Zbl