The conductivity measure for the Anderson model
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008) no. 1, pp. 128-150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the ac-conductivity in linear response theory for the Anderson tight-binding model. We define the electrical ac-conductivity and calculate the linear-response current at zero temperature for arbitrary Fermi energy. In particular, the Fermi energy may lie in a spectral region where extended states are believed to exist.
@article{JMAG_2008_4_1_a6,
     author = {Abel Klein and Peter M\"uller},
     title = {The conductivity measure for the {Anderson} model},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {128--150},
     year = {2008},
     volume = {4},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2008_4_1_a6/}
}
TY  - JOUR
AU  - Abel Klein
AU  - Peter Müller
TI  - The conductivity measure for the Anderson model
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2008
SP  - 128
EP  - 150
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2008_4_1_a6/
LA  - en
ID  - JMAG_2008_4_1_a6
ER  - 
%0 Journal Article
%A Abel Klein
%A Peter Müller
%T The conductivity measure for the Anderson model
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2008
%P 128-150
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2008_4_1_a6/
%G en
%F JMAG_2008_4_1_a6
Abel Klein; Peter Müller. The conductivity measure for the Anderson model. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008) no. 1, pp. 128-150. http://geodesic.mathdoc.fr/item/JMAG_2008_4_1_a6/

[1] M. Aizenman, “Localization at Weak Disorder: Some Elementary Bounds”, Rev. Math. Phys., 6 (1994), 1163–1182 | DOI | MR | Zbl

[2] M. Aizenman, G. M. Graf, “Localization Bounds for an Electron Gas”, J. Phys. A, 31 (1998), 6783–6806 | DOI | MR | Zbl

[3] M. Aizenman, S. Molchanov, “Localization at Large Disorder and at Extreme Energies: an Elementary Derivation”, Comm. Math. Phys., 157 (1993), 245–278 | DOI | MR | Zbl

[4] J. Bellissard, A. van Elst, H. Schulz-Baldes, “The Non Commutative Geometry of the Quantum Hall Effect”, J. Math. Phys., 35 (1994), 5373–5451 | DOI | MR | Zbl

[5] Mat. Sb., 82 (1970), 273–284 | DOI | MR | Zbl | Zbl

[6] J.-M. Bouclet, F. Germinet, A. Klein, J. H. Schenker, “Linear Response Theory for Magnetic Schrödinger Operators in Disordered Media”, J. Funct. Anal., 226 (2005), 301–372 | DOI | MR | Zbl

[7] R. Carmona, J. Lacroix, Spectral Theory of Random Schrödinger Operators, Birkhäuser, Boston, 1990 | MR | Zbl

[8] H. von Dreifus, A. Klein, “A New Proof of Localization in the Anderson Tight Binding Model”, Comm. Math. Phys., 124 (1989), 285–299 | DOI | MR | Zbl

[9] J. Fröhlich, F. Martinelli, E. Scoppola, T. Spencer, “Constructive Proof of Localization in the Anderson Tight Binding Model”, Comm. Math. Phys., 101 (1985), 21–46 | DOI | MR | Zbl

[10] J. Fröhlich, T. Spencer, “Absence of Diusion in the Anderson Tight Binding Model for Large Disorder or Low Energy”, Comm. Math. Phys., 88 (1983), 151–184 | DOI | MR | Zbl

[11] F. Germinet, A. Klein, “Bootstrap Multiscale Analysis and Localization in Random Media”, Comm. Math. Phys., 222 (2001), 415–448 | DOI | MR | Zbl

[12] F. Germinet, A. Klein, “Decay of Operator-Valued Kernels of Functions of Schrödinger and Other Operators”, Proc. Amer. Math. Soc., 131 (2003), 911–920 | DOI | MR | Zbl

[13] F. Germinet, A. Klein, “A Characterization of the Anderson Metal-Insulator Transport Transition”, Duke Math. J., 124 (2004), 309–351 | DOI | MR

[14] F. Germinet, A. Klein, “New Characterizations of the Region of Complete Localization for Random Schrödinger Operators”, J. Stat. Phys., 122 (2006), 73–94 | DOI | MR | Zbl

[15] L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Upper Saddle River, 2004 | MR | Zbl

[16] W. Hunziker, I. M. Sigal, “Time-Dependent Scattering Theory of $N$-body Quantum Systems”, Rev. Math. Phys., 12 (2000), 1033–1084 | DOI | MR | Zbl

[17] A. M. Khorunzhy, L. A. Pastur, “Limits of Infinite Interaction Radius, Dimensionality and the Number of Components for Random Operators with off-diagonal Randomness”, Comm. Math. Phys., 153 (1993), 605–646 | DOI | MR | Zbl

[18] W. Kirsch, O. Lenoble, L. Pastur, “On the Mott Formula for the ac Conductivity and Binary Correlators in the Strong Localization Regime of Disordered Systems”, J. Phys. A, 36 (2003), 12157–12180 | DOI | MR | Zbl

[19] W. Kirsch, F. Martinelli, “On the Ergodic Properties of the Spectrum of General Random Operators”, J. Reine Angew. Math., 334 (1982), 141–156 | MR | Zbl

[20] A. Klein, O. Lenoble, P. Müller, “On Mott's Formula for the ac Conductivity in the Anderson Model”, Ann. Math. (2), 166 (2007), 551–579 | DOI | MR

[21] Nauka, Moscow, 1982 | MR

[22] F. Nakano, “Absence of Transport in Anderson Localization”, Rev. Math. Phys., 14 (2002), 375–407 | DOI | MR | Zbl

[23] Teor. Mat. Fiz., 6 (1971), 415–424 | DOI | MR | Zbl

[24] Usp. Mat. Nauk, 28 (1973), 3–64 | DOI | MR | Zbl | Zbl

[25] L. A. Pastur, “On Some Asymptotic Formulas in the Strong Localization Regime of the Theory of Disordered Systems”, Mathematical Results in Quantum Mechanics, QMath7 Conf. Prague, June 22–26, 1998, Operator Theory: Adv. and Appl., 108, eds. J. Dittrich, P. Exner, M. Tater, Birkhäuser, Basel, 1999, 129–148 | MR | Zbl

[26] Tr. St-Peterbg. Mat. Obshch., 4, 1996, 222–286 | MR | Zbl

[27] L. A. Pastur, A. Figotin, Spectra of Random and Almost-Periodic Operators, Springer, Berlin, 1992 | MR

[28] H. Schulz-Baldes, J. Bellissard, “A Kinetic Theory for Quantum Transport in Aperiodic Media”, J. Stat. Phys., 91 (1998), 991–1026 | DOI | MR | Zbl

[29] F. Wegner, “Bounds on the Density of States in Disordered Systems”, Z. Physik B, 44 (1981), 9–15 | DOI | MR