A Wegner estimate for multi-particle random hamiltonians
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008) no. 1, pp. 121-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove aWegner estimate for a large class of multi-particle Anderson Hamiltonians on the lattice. These estimates will allow us to prove Anderson localization for such systems. A detailed proof of localization will be given in a subsequent paper.
@article{JMAG_2008_4_1_a5,
     author = {Werner Kirs{\cyrs}h},
     title = {A {Wegner} estimate for multi-particle random hamiltonians},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {121--127},
     year = {2008},
     volume = {4},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2008_4_1_a5/}
}
TY  - JOUR
AU  - Werner Kirsсh
TI  - A Wegner estimate for multi-particle random hamiltonians
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2008
SP  - 121
EP  - 127
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2008_4_1_a5/
LA  - en
ID  - JMAG_2008_4_1_a5
ER  - 
%0 Journal Article
%A Werner Kirsсh
%T A Wegner estimate for multi-particle random hamiltonians
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2008
%P 121-127
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2008_4_1_a5/
%G en
%F JMAG_2008_4_1_a5
Werner Kirsсh. A Wegner estimate for multi-particle random hamiltonians. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008) no. 1, pp. 121-127. http://geodesic.mathdoc.fr/item/JMAG_2008_4_1_a5/

[1] J. Bourgain, C. Kenig, “On Localization in the Continuous Anderson–Bernoulli Model in Higher Dimension”, Invent. Math., 161:2 (2005), 389–426 | DOI | MR | Zbl

[2] V. Chulaevsky, Yu. Suhov, Anderson Localisation for Interacting Multi-particle Quantum system on $Z$, preprint (version of Sept. 2006), Universite de Reims | Zbl

[3] J. M. Combes, P. D. Hislop, F. Klopp, Shu Nakamura, “The Wegner Estimate and the Integrated Density of States for some Random Operators”, Proc. Indian Acad. Sci., Math. Sci., 112:1 (2002), 31–53 | DOI | MR | Zbl

[4] H. von Dreifus, A. Klein, “A New Proof of Localization in the Anderson Tight Binding Model”, Commun. Math. Phys., 124 (1989), 285–299 | DOI | MR | Zbl

[5] J. Fröhlich, T. Spencer, “Absence of Diffusion in the Anderson Tight Binding Model for Large Disorder or Low Energy”, Commun. Math. Phys., 88 (1983), 151–184 | DOI | MR | Zbl

[6] W. Kirsch, “Wegner Estimates and Anderson Localization for Alloy-type Potentials”, Math. Z., 221 (1996), 507–512 | DOI | MR | Zbl

[7] F. Klopp, H. Zenk, The Integrated Density of States for an Interacting Multi- electron Homogeneous Model, preprint, arXiv: math-ph/03-470

[8] P. Stollmann, “Wegner Estimates and Localization for Continuum Anderson Models with Some Singular Distributions”, Arch. Math., 75 (2000), 507–311 | DOI | MR

[9] I. Veselic, “Integrated ensity and Wegner Estimates for Random Schrödinger Operators”, Spectral Theory of Schrödinger Operators (Mexico, 2001), Contemp. Math., 340, eds. Rafael del Río et al., AMS, Providence, RI, 2004, 97–183 | DOI | MR | Zbl

[10] F. Wegner, “Bounds on the Density of States in Disordered Systems”, Z. Phys. B, 44 (1981), 9–15 | DOI | MR

[11] H. Zenk, An Interacting Multielectron Anderson Model, preprint, arXiv: math-ph/03-410