@article{JMAG_2008_4_1_a2,
author = {I. Egorova and J. Michor and G. Teschl},
title = {Scattering theory for {Jacobi} operators with general step-like quasiperiodic background},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {33--62},
year = {2008},
volume = {4},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2008_4_1_a2/}
}
TY - JOUR AU - I. Egorova AU - J. Michor AU - G. Teschl TI - Scattering theory for Jacobi operators with general step-like quasiperiodic background JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2008 SP - 33 EP - 62 VL - 4 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2008_4_1_a2/ LA - en ID - JMAG_2008_4_1_a2 ER -
%0 Journal Article %A I. Egorova %A J. Michor %A G. Teschl %T Scattering theory for Jacobi operators with general step-like quasiperiodic background %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2008 %P 33-62 %V 4 %N 1 %U http://geodesic.mathdoc.fr/item/JMAG_2008_4_1_a2/ %G en %F JMAG_2008_4_1_a2
I. Egorova; J. Michor; G. Teschl. Scattering theory for Jacobi operators with general step-like quasiperiodic background. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008) no. 1, pp. 33-62. http://geodesic.mathdoc.fr/item/JMAG_2008_4_1_a2/
[1] J. Bazargan, I. Egorova, “Jacobi Operator with Step-Like Asymptotically Periodic Coefficients”, Mat. fiz., analiz, geom., 10 (2003), 425–442 | MR | Zbl
[2] A. Boutet de Monvel, I. Egorova, “The Toda Lattice with Step-Like Initial Data. Soliton Asymptotics”, Inverse Probl., 16:4 (2000), 955–977 | DOI | MR | Zbl
[3] A. Boutet de Monvel, I. Egorova, E. Khruslov, “Soliton Asymptotics of the Cauchy Problem Solution for the Toda Lattice”, Inverse Probl., 13:2 (1997), 223–237 | DOI | MR | Zbl
[4] A. Boutet de Monvel, I. Egorova, G. Teschl, Inverse Scattering Theory for One-Dimensional Schrödinger Operators with Step-Like Periodic Potentials, preprint, arXiv: 0707.4632
[5] K. M. Case, “Orthogonal Polynomials from the Viewpoint of Scattering Theory”, J. Math. Phys., 14 (1973), 2166–2175 | MR
[6] P. Deift, S. Kamvissis, T. Kriecherbauer, X. Zhou, “The Toda Rarefaction Problem”, Comm. Pure Appl. Math., 49:1 (1996), 35–83 | 3.0.CO;2-8 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[7] I. Egorova, “The Scattering Problem for Step-Like Jacobi Operator”, Mat. fiz., analiz, geom., 9 (2002), 188–205 | MR | Zbl
[8] I. Egorova, J. Michor, G. Teschl, “The Scattering Theory for Jacobi Operators with Quasi-Periodic Background”, Comm. Math. Phys., 264-3 (2006), 811–842 | DOI | MR | Zbl
[9] I. Egorova, J. Michor, G. Teschl, “Inverse Scattering Transform for the Toda Hierarchy with Quasi-Periodic Background”, Proc. Amer. Math. Soc., 135 (2007), 1817–1827 | DOI | MR | Zbl
[10] I. Egorova, J. Michor, G. Teschl, “Soliton Solutions of the Toda Hierarchy on Quasi-Periodic Background Revisited”, Math. Nach., 1 (2006) | Zbl
[11] I. Egorova, J. Michor, G. Teschl, “Scattering Theory for Jacobi Operators with Steplike Quasi-Periodic Background”, Inverse Probl., 23 (2007), 905–918 | DOI | MR | Zbl
[12] G. S. Guseinov, “The Inverse Problem of Scattering Theory for a Second-Order Difference Equation on the Whole Axis”, Soviet Math. Dokl., 17 (1976), 1684–1688 | Zbl
[13] S. Kamvissis, G. Teschl, “Stability of Periodic Soliton Equations under Short Range Perturbations”, Phys. Lett. A, 364-6 (2007), 480–483 | DOI | MR | Zbl
[14] S. Kamvissis, G. Teschl, Stability of the Periodic Toda Lattice under Short Range Perturbations, preprint, arXiv: 0705.0346
[15] V. A. Marchenko, Sturm–Liouville Operators and Applications, Birkhäuser, Basel, 1986 | MR | Zbl
[16] J. Michor, G. Teschl, “Trace Formulas for Jacobi Operators in Connection with Scattering Theory for Quasi-Periodic Background”, Operator Theory, Analysis, and Mathematical Physics, Oper. Theory Adv. Appl., 174, eds. J. Janas, et al., Birkhäuser, Basel, 2007, 69–76 | DOI | MR | Zbl
[17] N. I. Muskhelishvili, Singular Integral Equations, P. Noordhoff Ltd., Groningen, 1953 | MR
[18] G. Teschl, “Oscillation Theory and Renormalized Oscillation Theory for Jacobi Operators”, J. Diff. Eqs., 129 (1996), 532–558 | DOI | MR | Zbl
[19] G. Teschl, “On the Initial Value Problem for the Toda and Kac-van Moerbeke Hierarchies”, Diff. Eq. and Math. Phys., AMS/IP Stud. Adv. Math., 16, eds. R. Weikard, G. Weinstein, Amer. Math. Soc., Providence, RI, 2000, 375–384 | MR | Zbl
[20] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Math. Surv. and Mon., 72, Amer. Math. Soc., Rhode Island, 2000 | MR | Zbl
[21] G. Teschl, “Algebro-Geometric Constraints on Solitons with respect to Quasi-Periodic Backgrounds”, Bull. London Math. Soc., 39:4 (2007), 677–684 | DOI | MR | Zbl
[22] E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, v. 2, Clarendon Press, Oxford, 1958 | MR | Zbl
[23] S. Venakides, P. Deift, R. Oba, “The Toda Shock Problem”, Comm. Pure Appl. Math., 44:8–9 (1991), 1171–1242 | DOI | MR | Zbl
[24] A. Volberg, P. Yuditskii, “On the Inverse Scattering Problem for Jacobi Matrices with the Spectrum on an Interval, a Finite System of Intervals or a Cantor Set of Positive Length”, Comm. Math. Phys., 226 (2002), 567–605 | DOI | MR | Zbl