Distance matrices and isometric embeddings
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008) no. 1, pp. 7-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review the relations between distance matrices and isometric embeddings and give simple proofs that distance matrices defined on euclidean and spherical spaces have all eigenvalues except one nonpositive. Several generalizations are discussed.
@article{JMAG_2008_4_1_a0,
     author = {E. Bohomolny and O. Bohigas and C. Schmit},
     title = {Distance matrices and isometric embeddings},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {7--23},
     year = {2008},
     volume = {4},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2008_4_1_a0/}
}
TY  - JOUR
AU  - E. Bohomolny
AU  - O. Bohigas
AU  - C. Schmit
TI  - Distance matrices and isometric embeddings
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2008
SP  - 7
EP  - 23
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2008_4_1_a0/
LA  - en
ID  - JMAG_2008_4_1_a0
ER  - 
%0 Journal Article
%A E. Bohomolny
%A O. Bohigas
%A C. Schmit
%T Distance matrices and isometric embeddings
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2008
%P 7-23
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2008_4_1_a0/
%G en
%F JMAG_2008_4_1_a0
E. Bohomolny; O. Bohigas; C. Schmit. Distance matrices and isometric embeddings. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (2008) no. 1, pp. 7-23. http://geodesic.mathdoc.fr/item/JMAG_2008_4_1_a0/

[1] M. L. Mehta, Random Matrices, 3rd Ed., Acad. Press, New York, 2004 | MR | Zbl

[2] A. M. Vershik, Distance Matrices, Random Metrics and Urysohn Space, 2002, arXiv: ; “Random Mertic Spaces and Universality”, Russian Math. Surveys, 59 (2004), 259–295 math/0203008 | MR | DOI | MR

[3] E. Bogomolny, O. Bohigas, C. Schmit, “Spectral Properties of Distance Matrices”, J. Phys. A: Math. Gen., 36 (2003), 3595–3616 | DOI | MR | Zbl

[4] I. J. Schoenberg, “Remarks to Maurice Fréchet article ‘`Sur la définition axiomatique d’une classe d'espace distanciés vectoriellement applicable sur l'espace de Hilbert' ”, Ann. Math., 36 (1935), 724–732 | DOI | MR

[5] I. J. Schoenberg, “On Certain Metric Spaces Arising from Euclidean Spaces by a Change of Metric and their Imbedding in Hilbert Space”, Ann. Math., 38 (1937), 787–793 | DOI | MR

[6] J. H. Wells, L. R. Williams, Embeddings and Extensions in Analysis, Springer-Verlag, Berlin–Heidelberg–New York, 1975 | MR | Zbl

[7] L. M. Blumenthal, Theory and Applications of Distance Geometry, 2nd Ed., Chelsea House Pub., New York, 1970 | MR | Zbl

[8] M. Deza, M. Laurent, Geometry of Cuts and Metrics, Springer-Verlag, Heidelberg, 1997 | MR | Zbl

[9] F. R. Gantmacher, Théorie des Matrices, v. 1,2, Dunod, Paris, 1966 | Zbl

[10] I. J. Schoenberg, “Positive Definite Functions on Spheres”, Duke Math. J., 9 (1942), 96–108 | DOI | MR | Zbl

[11] A. Erdélyi(ed.), Higher transcendental functions, v. 2, McGraw-Hill, New York–Toronto–London, 1953

[12] D. M. Y. Sommerville, An Introduction to the Geometry of $N$ Dimensions, Dover, New York, 1958 | MR

[13] C. W. Borchardt, Über die Aufgabe des Maximum, welche der Bestimmung des Tetraeders von größstem Volumen bei gegebenem Flächeninhalt der Seitenflächen für mehr als drei Dimensionen entspricht, Mathematische Abhandlungen der Akademie der Wissenschaften zu Berlin, 1866

[14] M. Mézard, G. Parisi, A. Zee, “Spectra of Euclidean Random Matrices”, Nucl. Phys. B, 559 (1999), 689–701 | DOI | MR | Zbl