On trace regularity of solutions to a wave equation with homogeneous Neumann boundary conditions
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007) no. 4, pp. 468-489 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove an additional regularity of time derivative of the trace of solution to the wave equation on the 3D half space with the homogeneous Neumann boundary conditions.
@article{JMAG_2007_3_4_a5,
     author = {I. A. Ryzhkova},
     title = {On trace regularity of solutions to a wave equation with homogeneous {Neumann} boundary conditions},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {468--489},
     year = {2007},
     volume = {3},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2007_3_4_a5/}
}
TY  - JOUR
AU  - I. A. Ryzhkova
TI  - On trace regularity of solutions to a wave equation with homogeneous Neumann boundary conditions
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2007
SP  - 468
EP  - 489
VL  - 3
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/JMAG_2007_3_4_a5/
LA  - en
ID  - JMAG_2007_3_4_a5
ER  - 
%0 Journal Article
%A I. A. Ryzhkova
%T On trace regularity of solutions to a wave equation with homogeneous Neumann boundary conditions
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2007
%P 468-489
%V 3
%N 4
%U http://geodesic.mathdoc.fr/item/JMAG_2007_3_4_a5/
%G en
%F JMAG_2007_3_4_a5
I. A. Ryzhkova. On trace regularity of solutions to a wave equation with homogeneous Neumann boundary conditions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007) no. 4, pp. 468-489. http://geodesic.mathdoc.fr/item/JMAG_2007_3_4_a5/

[1] I. Ryzhkova, “Stabilization of von Kármán Plate in the Presence of Thermal Effects in the Subsonic Flow of Gas”, J. Math. Anal. Appl., 294:2 (2004), 462–481 | DOI | MR | Zbl

[2] I. Ryzhkova, “Dynamics of a Thermoelastic von Kármán Plate in a Subsonic Gas Flow”, Z. Angew. Math. Phys., 58 (2007), 246–261 | DOI | MR | Zbl

[3] I. Lasiecka, R. Triggiani, “Trace Regularity of the Solution of the Wave Equation with Homogeneous Neumann Boundary Conditions and Compactly Supported Data”, J. Math. Anal. Appl., 141:1 (1989), 49–71 | DOI | MR | Zbl

[4] I. Lasiecka, R. Triggiani, “Regularity Theory of Hyperbolic Equations with Non-homogeneous Neumann Boundary Conditions. II: General Boundary Data”, J. Diff. Eq., 94 (1991), 112–164 | DOI | MR | Zbl

[5] J. Shatah, M. Struwe, Geometric Wave Equations. Courant Lecture Notes in Mathematics, v. 2, New York University, New York, 1998 | MR | Zbl

[6] L. Hörmander, “Estimates for translation invariant operators in $L^p$ spaces”, Acta Math., 104 (1960), 93–140 | DOI | MR | Zbl

[7] J.-L. Lions, E. Magenes, Problèmes aux Limites Non Homogènes et Applications, v. 1, Dunod–Paris, 1968

[8] L. Lions, “Espaces d'interpolation et domaines puissances fractionnaires d'opérators”, J. Math. Soc. Japan, 14:2 (1962), 233–241 | DOI | MR | Zbl

[9] V. S. Vladimirov, Equations of Mathematical Physics, Nauka, Moscow, 1988 (Russian) | MR

[10] Tables of integral trasforms, ed. A. Erdelyi, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1954

[11] H. O. Fattorini, “Ordinary Differential Equations in Linear Topological Spaces. I”, J. Diff. Eq., 5 (1968), 72–105 ; “II”, 6 (1969), 537–565 | DOI | MR | DOI | MR

[12] I. Lasiecka, R. Triggiani, “A Cosine Operator Approach to Modeling $L_2(0,T;L_2(\Gamma))$-boundary input Hyperbolic Equations”, Appl. Math. Optim., 7 (1981), 35–83 | DOI | MR

[13] L. Boutet de Monvel, I. D. Chueshov, “Oscillation of von Karman Plate in a Potential Gas Flow”, Izv. RAN. Ser. Mat., 63 (1999), 219–244 | MR | Zbl