@article{JMAG_2007_3_4_a4,
author = {V. N. Kokarev},
title = {On complete convex solutions of equations similar to the improper affine sphere equation},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {448--467},
year = {2007},
volume = {3},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2007_3_4_a4/}
}
TY - JOUR AU - V. N. Kokarev TI - On complete convex solutions of equations similar to the improper affine sphere equation JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2007 SP - 448 EP - 467 VL - 3 IS - 4 UR - http://geodesic.mathdoc.fr/item/JMAG_2007_3_4_a4/ LA - ru ID - JMAG_2007_3_4_a4 ER -
V. N. Kokarev. On complete convex solutions of equations similar to the improper affine sphere equation. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007) no. 4, pp. 448-467. http://geodesic.mathdoc.fr/item/JMAG_2007_3_4_a4/
[1] V. N. Kokarev, “Obobschenie teoremy Kalabi–Pogorelova”, Tr. Mezhdunar. shkoly-seminara po geometrii i analizu pamyati N. V. Efimova, Rostov-na-Donu, 2002, 33–34
[2] K. Jörgens, “Über die Lösungen der Differentialgleichung $rt-s^2=1$”, Math. Ann., 127 (1954), 130–134 | DOI | MR | Zbl
[3] E. Calabi, “Improper affine hyperspheres of convex type and a generalizations of a theorem by K. Jörgens”, Michigan Math. J., 5:2 (1958), 105–126 | DOI | MR | Zbl
[4] A. V. Pogorelov, Mnogomernaya problema Minkovskogo, Nauka, Moskva, 1975 | MR | Zbl
[5] G. Tzitzeika, “Sur une Nouvelle Classe de Surfaces”, Comtes Rendus Acad. Sci. Paris, 145 (1907), 132–133; 146 (1908), 165–166
[6] A. D. Aleksandrov, “Smeshannye diskriminanty i smeshannye ob'emy”, Matem. sb., 1938, no. 2, 227–251 | Zbl
[7] A. V. Pogorelov, Mnogomernoe uravnenie Monzha-Ampera $\det(z_{ij})= \varphi(z_1,\dots,z_n,z,x_1,\dots,x_n)$, Nauka, Moskva, 1988 | MR
[8] P. Lankaster, Teoriya matrits, Nauka, Moskva, 1978 | MR
[9] V. L. Zaguskin, “Ob opisannykh i vpisannykh ellipsoidakh ekstremalnogo ob'ema”, Uspekhi mat. nauk, 13:6 (1958), 89–92 | MR | Zbl
[10] R. Bellman, Vvedenie v teoriyu matrits, Nauka, Moskva, 1976 | MR
[11] V. N. Kokarev, “O polnykh vypuklykh resheniyakh uravneniya $\operatorname{spur}_m(z_{ij})=1$”, Mat. fizika, analiz, geom., 3 (1996), 102–117 | MR | Zbl
[12] E. Calabi, “An Extension of E. Hopf's Maximum Principle with an Application to Riemannian Geometry”, Duce Math. J., 25 (1958), 45–56 | DOI | MR | Zbl
[13] S. Agmon, A. Duglis, L. Nirenberg, Otsenki vblizi granitsy reshenii ellipticheskikh uravnenii v chastnykh proizvodnykh pri obschikh granichnykh usloviyakh, v. 1, Izd-vo inostr. lit., Moskva, 1962