@article{JMAG_2007_3_4_a3,
author = {V. A. Zolotarev},
title = {Scattering scheme with many parameters and translational models of commutative operator systems},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {424--447},
year = {2007},
volume = {3},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2007_3_4_a3/}
}
TY - JOUR AU - V. A. Zolotarev TI - Scattering scheme with many parameters and translational models of commutative operator systems JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2007 SP - 424 EP - 447 VL - 3 IS - 4 UR - http://geodesic.mathdoc.fr/item/JMAG_2007_3_4_a3/ LA - en ID - JMAG_2007_3_4_a3 ER -
V. A. Zolotarev. Scattering scheme with many parameters and translational models of commutative operator systems. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007) no. 4, pp. 424-447. http://geodesic.mathdoc.fr/item/JMAG_2007_3_4_a3/
[1] M. S. Livšic, N. Kravitsky, A. Markus, V. Vinnikov, “Theory of Commuting Nonselfadjoint Operators”, Math. Appl., 332, Kluver Acad. Publ. Groups, Dordrecht, 1995 | MR | Zbl
[2] V. A. Zolotarev, “Time Cones and Functional Model on the Riemann Surface”, Mat. Sb., 181:7 (1990), 965–995 (Russian)
[3] B. Szekefalvi-Nagy, Ch. Foyaş, Harmony Analisys of Operators in the Hilbert Space, Mir, Moscow, 1970 (Russian)
[4] V. A. Zolotarev, “Model Representations of Commutative Systems of Linear Operators”, Funkts. Anal. i yego Prilozen., 22 (1988), 66–68 (Russian) | DOI | MR | Zbl
[5] M. S. Brodskiy, “Unitary Operator Colligations and their Characteristic Functions”, Usp. Mat. Nauk, 33:4 (1978), 141–168 (Russian) | MR
[6] V. A. Zolotarev, Analitic Methods of Spectral Representations of Nonselfadjoint and Nonunitary Operators, MagPress, Kharkiv, 2003 (Russian)
[7] V. A. Zolotarev, “Isometric Expansions of Commutative Systems of Linear Operators”, Mat. fiz., analiz, geom., 11 (2004), 282–301 (Russian) | MR | Zbl
[8] V. A. Zolotarev, “On Isometric Dilations of Commutative Systems of Linear Operators”, J. Math. Phys., Anal., Geom., 1 (2005), 192–208 | MR | Zbl