A multidimensional version of Levin's secular constant theorem and its applications
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007) no. 3, pp. 365-377 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study holomorphic almost periodic functions on a tube domain with the spectrum in a cone. We extend to this case Levin's theorem on a connection between the Jessen function, secular constant, and the Phragmen-Lindelöf indicator. Then we obtain a multidimensional version of Picard's theorem on exceptional values for our class.
@article{JMAG_2007_3_3_a4,
     author = {S. Yu. Favorov and N. Girya},
     title = {A multidimensional version of {Levin's} secular constant theorem and its applications},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {365--377},
     year = {2007},
     volume = {3},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2007_3_3_a4/}
}
TY  - JOUR
AU  - S. Yu. Favorov
AU  - N. Girya
TI  - A multidimensional version of Levin's secular constant theorem and its applications
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2007
SP  - 365
EP  - 377
VL  - 3
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2007_3_3_a4/
LA  - en
ID  - JMAG_2007_3_3_a4
ER  - 
%0 Journal Article
%A S. Yu. Favorov
%A N. Girya
%T A multidimensional version of Levin's secular constant theorem and its applications
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2007
%P 365-377
%V 3
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2007_3_3_a4/
%G en
%F JMAG_2007_3_3_a4
S. Yu. Favorov; N. Girya. A multidimensional version of Levin's secular constant theorem and its applications. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007) no. 3, pp. 365-377. http://geodesic.mathdoc.fr/item/JMAG_2007_3_3_a4/

[1] A. S. Besicovitch, Almost Periodic Functions, Cambridge Univ. Press, Cambridge, 1932

[2] H. Bohr, “Zur Theorie der Fastperiodischen Funktionen. III: Teil. Dirichletentwicklung Analytischer Funktionen”, Acta Math., 47 (1926), 237–281 | DOI | MR | Zbl

[3] C. Corduneanu, Almost Periodic Functions, Interscience Publ., New York–London–Sydney–Toronto, 1968, a division of John Wiley | MR | Zbl

[4] S. Favorov, O. Udodova, “Almost Periodic Functions in Finite-Dimensional Space with the Spectrum in a Cone”, Mat. fiz., anal., geom., 9 (2002), 456–477 | MR

[5] S. Yu. Favorov, N. P. Girya, “The Asymptotic Properties of Almost Periodic Functions”, Mat. Stud., 25:2 (2006), 191–201 (Russian) | MR | Zbl

[6] Ph. Hartman, “Mean Motions and Almost Periodic Functions”, Trans. Amer. Math. Soc., 46 (1939), 64–81 | DOI | MR

[7] B. Jessen, H. Tornehave, “Mean Motions and Zeros of Almost Periodic Functions”, Acta Math., 77 (1945), 137–279 | DOI | MR | Zbl

[8] P. Koosis, The Logarithmic Integral, Cambrige Univ. Press, Cambrige, 1988 | MR | Zbl

[9] B. Ya. Levin, “On Secular Constant of Holomorpic Almost Periodic Function”, Dokl. AN USSR, 33 (1941), 182–184 (Russian)

[10] B. Ya. Levin, Distributions of Zeros of Entire Functions, v. 5, Amer. Math. Soc., Providence, RI, 1980 | MR

[11] L. I. Ronkin, “Jessen's Theorem for Holomorphic Almost Periodic Functions in Tube Domains”, Sib. Mat. Zh., 28:3 (1987), 199–204 (Russian) | MR | Zbl

[12] L. I. Ronkin, “On a Certain Class of Holomorphic Almost Periodic Functions”, Sib. Mat. Zh., 33 (1992), 135–141 (Russian) | DOI | MR | Zbl

[13] L. I. Ronkin, “CR-Functions and Holomorphic Almost Periodic Functions with Entire Base”, Mat. fiz., anal., geom., 4 (1997), 472–490 (Russian) | MR | Zbl

[14] L. I. Ronkin, Functions of Completely Regular Growth. Mathematics and its Appl., Soviet Ser., 81, Kluwer Acad. Publ., Dordrecht–Boston–London, 1992 | MR | Zbl