Homogenization of a linear nonstationary Navier–Stokes equations system with a time-variant domain with a fine-grained boundary
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007) no. 3, pp. 342-364 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of distortion of viscous incompressible fluid with a great number of solid particles with given velocities is considered. The diameters of particles and the distance between them tend to zero, and the number of particles tends to infinity. The asymptotic behavior of the solutions of the linear system of Navier-Stokes equations is considered. In a homogenized model there appears an additional term containing the strength tensor of a single particle.
@article{JMAG_2007_3_3_a3,
     author = {N. K. Radyakin},
     title = {Homogenization of a linear nonstationary {Navier{\textendash}Stokes} equations system with a time-variant domain with a fine-grained boundary},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {342--364},
     year = {2007},
     volume = {3},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2007_3_3_a3/}
}
TY  - JOUR
AU  - N. K. Radyakin
TI  - Homogenization of a linear nonstationary Navier–Stokes equations system with a time-variant domain with a fine-grained boundary
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2007
SP  - 342
EP  - 364
VL  - 3
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2007_3_3_a3/
LA  - en
ID  - JMAG_2007_3_3_a3
ER  - 
%0 Journal Article
%A N. K. Radyakin
%T Homogenization of a linear nonstationary Navier–Stokes equations system with a time-variant domain with a fine-grained boundary
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2007
%P 342-364
%V 3
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2007_3_3_a3/
%G en
%F JMAG_2007_3_3_a3
N. K. Radyakin. Homogenization of a linear nonstationary Navier–Stokes equations system with a time-variant domain with a fine-grained boundary. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007) no. 3, pp. 342-364. http://geodesic.mathdoc.fr/item/JMAG_2007_3_3_a3/

[1] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Mathematics and its Applications, 2, Gordon and Breach Science Publishers, New York, 1969, 224 pp. | MR

[2] O. A. Ladyzhenskaya, “Initial-Boundary Problem for Navier–Stokes Equations in Domains with Time-Varying Boundaries”, Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Steklov, Leningrad, 11, 1968, 97–128 (Russian) | MR | Zbl

[3] V. A. Marchenko, E. Ya. Khruslov, Boundary Value Problems in Domains with a Fine-Grained Boundary, Naukova Dumka, Kiev, 1974 (Russian) | MR

[4] V. A. Lvov, “The Convergence of the Solutions of a System of Initial Boundary Value Problems in Domains with Moving Fine-Grained Boundary”, Dokl. AN USSR, 1987, no. 7, 21–24 (Russian) | MR | Zbl

[5] Eh. B. Bykhovskij, N. V. Smirnov, “On Orthogonal Decomposition of the Space of Vector Functions Quadratically Summable in the Given Domain and the Operators of Vector Analysis”, Tr. MIAN USSR, 59, 1960, 5–36 (Russian) | MR | Zbl

[6] E. Ya. Khruslov, Z. F. Nazyrov, Perturbation of the Thermal Field of Moving Small Particles. Studies in the Theory of Operators and their Applications, Naukova Dumka, Kiev, 1979 (Russian) | MR