@article{JMAG_2007_3_3_a3,
author = {N. K. Radyakin},
title = {Homogenization of a linear nonstationary {Navier{\textendash}Stokes} equations system with a time-variant domain with a fine-grained boundary},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {342--364},
year = {2007},
volume = {3},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2007_3_3_a3/}
}
TY - JOUR AU - N. K. Radyakin TI - Homogenization of a linear nonstationary Navier–Stokes equations system with a time-variant domain with a fine-grained boundary JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2007 SP - 342 EP - 364 VL - 3 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2007_3_3_a3/ LA - en ID - JMAG_2007_3_3_a3 ER -
%0 Journal Article %A N. K. Radyakin %T Homogenization of a linear nonstationary Navier–Stokes equations system with a time-variant domain with a fine-grained boundary %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2007 %P 342-364 %V 3 %N 3 %U http://geodesic.mathdoc.fr/item/JMAG_2007_3_3_a3/ %G en %F JMAG_2007_3_3_a3
N. K. Radyakin. Homogenization of a linear nonstationary Navier–Stokes equations system with a time-variant domain with a fine-grained boundary. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007) no. 3, pp. 342-364. http://geodesic.mathdoc.fr/item/JMAG_2007_3_3_a3/
[1] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Mathematics and its Applications, 2, Gordon and Breach Science Publishers, New York, 1969, 224 pp. | MR
[2] O. A. Ladyzhenskaya, “Initial-Boundary Problem for Navier–Stokes Equations in Domains with Time-Varying Boundaries”, Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Steklov, Leningrad, 11, 1968, 97–128 (Russian) | MR | Zbl
[3] V. A. Marchenko, E. Ya. Khruslov, Boundary Value Problems in Domains with a Fine-Grained Boundary, Naukova Dumka, Kiev, 1974 (Russian) | MR
[4] V. A. Lvov, “The Convergence of the Solutions of a System of Initial Boundary Value Problems in Domains with Moving Fine-Grained Boundary”, Dokl. AN USSR, 1987, no. 7, 21–24 (Russian) | MR | Zbl
[5] Eh. B. Bykhovskij, N. V. Smirnov, “On Orthogonal Decomposition of the Space of Vector Functions Quadratically Summable in the Given Domain and the Operators of Vector Analysis”, Tr. MIAN USSR, 59, 1960, 5–36 (Russian) | MR | Zbl
[6] E. Ya. Khruslov, Z. F. Nazyrov, Perturbation of the Thermal Field of Moving Small Particles. Studies in the Theory of Operators and their Applications, Naukova Dumka, Kiev, 1979 (Russian) | MR