Asymptotic analysis of a parabolic problem in a thick two-level junction
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007) no. 3, pp. 313-341 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{JMAG_2007_3_3_a2,
     author = {T. Durante and T. A. Mel'nik},
     title = {Asymptotic analysis of a parabolic problem in a thick two-level junction},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {313--341},
     year = {2007},
     volume = {3},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2007_3_3_a2/}
}
TY  - JOUR
AU  - T. Durante
AU  - T. A. Mel'nik
TI  - Asymptotic analysis of a parabolic problem in a thick two-level junction
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2007
SP  - 313
EP  - 341
VL  - 3
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2007_3_3_a2/
LA  - en
ID  - JMAG_2007_3_3_a2
ER  - 
%0 Journal Article
%A T. Durante
%A T. A. Mel'nik
%T Asymptotic analysis of a parabolic problem in a thick two-level junction
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2007
%P 313-341
%V 3
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2007_3_3_a2/
%G en
%F JMAG_2007_3_3_a2
T. Durante; T. A. Mel'nik. Asymptotic analysis of a parabolic problem in a thick two-level junction. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007) no. 3, pp. 313-341. http://geodesic.mathdoc.fr/item/JMAG_2007_3_3_a2/

[1] Nauka, Moscow, 1984 | DOI | MR | Zbl | Zbl

[2] D. Cioranescu, J. Saint Jean Paulin, Homogenization of Reticulated Structures, Ser. Appl. Math. Sci., 136, Springer-Verlag, New York, 1999 | DOI | MR | Zbl

[3] V. A. Marchenko, E. Ya. Khruslov, Boundary-Value Problems in Domains with Finegrained Boundary, Naukova Dumka, Kiev, 1974 (Russian)

[4] V. A. Marchenko, E. Ya. Khruslov, Homogenized Models of Micro Heterogeneous Mediums, Naukova Dumka, Kyiv, 2005 (Russian)

[5] S. A. Nazarov, Asymptotic Analysis of the Thin Plates and Rods, Nauchnaya Kniga, Novosibirsk, 2002 (Russian) | Zbl

[6] O. A. Oleinik, G. A. Yosifyan, A. S. Shamaev, Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992 | MR | Zbl

[7] E. Sanchez-Palencia, Nonhomogeneous Media and Vibration Theory, Springer-Verlag, Berlin, 1980 | MR | Zbl

[8] I. V. Skrypnyk, The Methods of the Investigation of the Nonlinear Elliptical Boundary Value Problems, Nauka, Moscow, 1990 (Russian)

[9] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, Berlin–Heidelberg, 1994 | MR

[10] T. A. Mel'nyk, “Averaging of Elliptic Equations Describing the Processes in Strongly Nonuniform Thin Perforated Domains with Rapidly Varying Thickness”, Dokl. Akad. Nauk UkrSSR, 1991, no. 10, 15–19 (Russian) | MR

[11] G. A. Chechkin, A. Friedman, A. Piatnitski, “The Boundary-Value Problem in Domains with Very Rapidly Oscillating Boundary”, J. Math. Anal. Appl., 231 (1999), 213–234 | DOI | MR | Zbl

[12] V. P. Kotliarov, E. Ya. Khruslov, “On a Limit Boundary Condition of Some Neumann Problem”, Teor. Funkts., Funkts. Anal. i Prilozhen., 10 (1970), 83–96 (Russian)

[13] G. V. Suzikov, E. Ya. Khruslov, “On Advancing Sound Waves Through Narrow Channels in a Reflacting Layer”, Teor. Funkts., Funkts. Anal. i Prilozhen, 5 (1976), 35–49 (Russian)

[14] E. Ya. Khruslov, “On the Resonance Phenomenas in one Problem of Diffraction”, Teor. Funkts., Funkts. Anal. i Prilozhen., 10 (1968), 113–120 (Russian)

[15] F. Fleury, E. Sanchez-Palencia, “Asymptotic and Spectral properties of the acoustic vibrations of body perforated by narrow channels”, Bull. Sci. Math., 2:110 (1986), 149–176 | MR

[16] A. Benkaddour, J. Sanchez-Hubert, “Spectral Study of a Coupled Compact-Noncompact Problem”, Model Math. Anal. Number., 26 (1992), 659–672 | MR | Zbl

[17] J. Sanchez-Hubert, E. Sanchez-Palencia, Vibration and Coupling of Continuous Systems, Springer-Verlag, Berlin, 1989 | MR | Zbl

[18] T. A. Mel'nyk, S. A. Nazarov, “Asymptotic Structure of the Spectrum of the Neumann Problem in a Thin Comb-like Domain”, C.R. Acad. Sci., Paris, Ser. 1, 319 (1994), 1343–1348 | MR | Zbl

[19] T. A. Mel'nyk, S. A. Nazarov, “Asymptotics of the Neumann Spectral Problem Solution in a Domain of “Thick Comb””, Tr. Sem. im. I. G. Petrovskogo, 19, 1996, 138–174 (Russian)

[20] T. A. Mel'nyk, “Homogenization of the Poisson Equation in a Thick Periodic Junction”, Zeitschrift für Analysis und ihre Anwendungen, 18:4 (1999), 953–975 | DOI | MR | Zbl

[21] T. A. Mel'nyk, S. A. Nazarov, “Asymptotic Analysis of the Neumann Problem of the Junction of a Body and Thin Heavy Rods”, Algebra i Analiz, 12:2 (2000), 188–238 (Russian) | MR | Zbl

[22] Ukr. Math. J., 52:11 (2001), 1737–1749 | DOI | MR

[23] S. A. Nazarov, “Junctions of Singularly Degenerating Domains with Different Limit Demension, I”, Tr. Sem. im. I. G. Petrovskogo, 18, 1995, 1–78 ; “II”, 20, 2000, 155–196 (Russian) | MR

[24] R. Brizzi, J. P. Chalot, “Boundary Homogenization and Neumann Boundary Value Problem”, Ric. di Matimatica, 46 (1997), 341–387 | MR | Zbl

[25] D. Blanchard, L. Carbone, A. Gaudiello, “Homogenization of a Monotone Problem in a Domain with Oscillating Boundary”, Math. Modelling and Numerical Anal., 33:5 (1999), 1057–1070 | DOI | MR | Zbl

[26] T. A. Mel'nyk, “Asymptotic Behavior of Eigenvalues and Eigenfunctions of the Fourier Problem in a Thick Multi-Level Junction”, Ukr. Math. J., 58:2 (2006), 195–216 | MR | Zbl

[27] U. De Maio , T. A. Mel'nyk, C. Perugia, “Homogenization of the Robin Problem in a Thick Multi-Level Junction”, Nonlinear Oscillations, 7:3 (2004), 336–356 | DOI | MR

[28] T. A. Mel'nyk, P. S. Vashchuk, “Homogenization of a Boundary-Value Problem with Varying Type of Boundary Conditions in a Thick Two-Level Junction”, Nonlinear Oscillations, 8:2 (2005), 241–257 | MR | Zbl

[29] U. De Maio, T. Durante, T. A. Mel'nyk, “Asymptotic Approximation for the Solution to the Robin Problem in a Thick Multi-Level Junction”, Math. Models and Methods Appl. Sci., 15:12 (2005), 1897–1921 | DOI | MR | Zbl

[30] T. A. Mel'nyk, P. S. Vashchuk, “Homogenization of the Neumann–Fourier Problem in a Thick Two-Level Junction of type 3:2:1”, J. Math. Phys., Anal., Geom., 2 (2006), 318–337 | MR | Zbl

[31] L. C. Evans, Partial differential equations, Graduate Stud. in Math., 19, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[32] Amer. Math. Soc., Providence, RI, 1968 | MR

[33] S. A. Nazarov, B. A. Plamenevskii, Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin, 1994 | MR

[34] S. A. Nazarov, “The Polynimial Property Selfadjoint Elliptic Boundary Value Problems and Algebraic Discribsion their Atributes”, Usp. Mat. Nauk, 54:5 (1999), 77–142 (Russian) | DOI | MR | Zbl

[35] U. De Maio, T. A. Mel'nyk, “Homogenization of the Robin Problem in a Thick Multistructures of Type 3:2:2”, Asymp. Analysis, 41 (2005), 161–177 | MR | Zbl

[36] V. P. Mikhailov, Partial differential equations, Nauka, Moscow, 1983 (Russian) | MR | Zbl

[37] W. E, B. Engquist, “Multiscale Modeling and Computation”, Notices AMS, 50 (2003), 1062–1071 | MR