@article{JMAG_2007_3_2_a5,
author = {G. Muraz and Quoc Phong Vu},
title = {On stability of polynomially bounded operators},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {234--240},
year = {2007},
volume = {3},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2007_3_2_a5/}
}
G. Muraz; Quoc Phong Vu. On stability of polynomially bounded operators. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007) no. 2, pp. 234-240. http://geodesic.mathdoc.fr/item/JMAG_2007_3_2_a5/
[1] W. Arendt, C. J. K. Batty, “Tauberian Theorems and Stability of One-Parameter Semigroups”, Trans. Amer. Math. Soc., 306 (1988), 837–852 | DOI | MR | Zbl
[2] C. J. K. Batty, Q. Ph. Vu, “Stability of Strongly Continuous Representations of Abelian Semigroups”, Math. Z., 209:1 (1992), 75–88 | DOI | MR | Zbl
[3] B. Beauzamy, Introduction to Operator Theory and Invariant Subspaces, North-Holland, Amsterdam, 1988 | MR | Zbl
[4] N. Dunford, J. T. Schwartz, Linear Operators. III. Spectral Operators, Wiley, New York, 1971 | MR | Zbl
[5] K. Hoffman, Banach Spaces of Analytic Functions, Dover Publ. Inc., New York, 1988 | MR | Zbl
[6] L. Kérchy, J. van Neerven, “Jan Polynomially Bounded Operators whose Spectrum on the Unit Circle Has Measure Zero”, Acta Sci. Math. (Szeged), 63:3–4 (1997), 551–562 | MR | Zbl
[7] Yu. Lyubich, Q. Ph. Vu, “Asymptotic Stability of Linear Differential Equations in Banach Spaces”, Stud. Math., 88:1 (1988), 37–42 | MR | Zbl
[8] Sz. Nagy, C. Foias, Harmonic Analysis of Operators on Hilbert Space, Akadmiai Kiad, Budapest, 1970 | MR | Zbl
[9] G. Pisier, “A Polynomialy Bounded Operator on Hilbert Space which is not Similar to a Contraction”, J. Amer. Math. Soc., 10 (1997), 351–359 | DOI | MR
[10] G. M. Sklyar, V. Ya. Shirman, “Asymptotic Stability of a Linear Differential Equation in a Banach Space”, Teor. Funkts., Funkts. Anal. i Prilozhen., 37 (1982), 127–132 (Russian) | MR | Zbl
[11] J. Soviet Math., 49:6 (1990), 1263–1266 | DOI | MR | Zbl
[12] Q. Ph. Vu, “Almost Periodic and Strongly Stable Semigroups of Operators”, 1994, 401–426 ; Banach Center Publ., 38, Polish Acad. Sci., Warsaw, 1997 | MR
[13] Q. Ph. Vu, “Theorems of Katznelson–Tzafriri Type for Semigroups of Operators”, J. Funct. Anal., 103:1 (1992), 74–84 | DOI | MR | Zbl