On stability of polynomially bounded operators
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007) no. 2, pp. 234-240 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{JMAG_2007_3_2_a5,
     author = {G. Muraz and Quoc Phong Vu},
     title = {On stability of polynomially bounded operators},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {234--240},
     year = {2007},
     volume = {3},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2007_3_2_a5/}
}
TY  - JOUR
AU  - G. Muraz
AU  - Quoc Phong Vu
TI  - On stability of polynomially bounded operators
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2007
SP  - 234
EP  - 240
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2007_3_2_a5/
LA  - en
ID  - JMAG_2007_3_2_a5
ER  - 
%0 Journal Article
%A G. Muraz
%A Quoc Phong Vu
%T On stability of polynomially bounded operators
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2007
%P 234-240
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2007_3_2_a5/
%G en
%F JMAG_2007_3_2_a5
G. Muraz; Quoc Phong Vu. On stability of polynomially bounded operators. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007) no. 2, pp. 234-240. http://geodesic.mathdoc.fr/item/JMAG_2007_3_2_a5/

[1] W. Arendt, C. J. K. Batty, “Tauberian Theorems and Stability of One-Parameter Semigroups”, Trans. Amer. Math. Soc., 306 (1988), 837–852 | DOI | MR | Zbl

[2] C. J. K. Batty, Q. Ph. Vu, “Stability of Strongly Continuous Representations of Abelian Semigroups”, Math. Z., 209:1 (1992), 75–88 | DOI | MR | Zbl

[3] B. Beauzamy, Introduction to Operator Theory and Invariant Subspaces, North-Holland, Amsterdam, 1988 | MR | Zbl

[4] N. Dunford, J. T. Schwartz, Linear Operators. III. Spectral Operators, Wiley, New York, 1971 | MR | Zbl

[5] K. Hoffman, Banach Spaces of Analytic Functions, Dover Publ. Inc., New York, 1988 | MR | Zbl

[6] L. Kérchy, J. van Neerven, “Jan Polynomially Bounded Operators whose Spectrum on the Unit Circle Has Measure Zero”, Acta Sci. Math. (Szeged), 63:3–4 (1997), 551–562 | MR | Zbl

[7] Yu. Lyubich, Q. Ph. Vu, “Asymptotic Stability of Linear Differential Equations in Banach Spaces”, Stud. Math., 88:1 (1988), 37–42 | MR | Zbl

[8] Sz. Nagy, C. Foias, Harmonic Analysis of Operators on Hilbert Space, Akadmiai Kiad, Budapest, 1970 | MR | Zbl

[9] G. Pisier, “A Polynomialy Bounded Operator on Hilbert Space which is not Similar to a Contraction”, J. Amer. Math. Soc., 10 (1997), 351–359 | DOI | MR

[10] G. M. Sklyar, V. Ya. Shirman, “Asymptotic Stability of a Linear Differential Equation in a Banach Space”, Teor. Funkts., Funkts. Anal. i Prilozhen., 37 (1982), 127–132 (Russian) | MR | Zbl

[11] J. Soviet Math., 49:6 (1990), 1263–1266 | DOI | MR | Zbl

[12] Q. Ph. Vu, “Almost Periodic and Strongly Stable Semigroups of Operators”, 1994, 401–426 ; Banach Center Publ., 38, Polish Acad. Sci., Warsaw, 1997 | MR

[13] Q. Ph. Vu, “Theorems of Katznelson–Tzafriri Type for Semigroups of Operators”, J. Funct. Anal., 103:1 (1992), 74–84 | DOI | MR | Zbl