Dominated convergence and Egorov theorems for filter convergence
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007) no. 2, pp. 196-212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the filters, such that for convergence with respect to this filters the Lebesgue dominated convergence theorem and the Egorov theorem on almost uniform convergence are valid (the Lebesgue filters and the Egorov filters, respectively). Some characterizations of the Egorov and the Lebesgue filters are given. It is shown that the class of Egorov filters is a proper subset of the class of Lebesgue filters, in particular, statistical convergence filter is the Lebesgue but not the Egorov filter. It is also shown that there are no free Lebesgue ultrafilters. Significant attention is paid to the filters generated by a matrix summability method.
@article{JMAG_2007_3_2_a3,
     author = {V. Kadets and A. Leonov},
     title = {Dominated convergence and {Egorov} theorems for filter convergence},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {196--212},
     year = {2007},
     volume = {3},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2007_3_2_a3/}
}
TY  - JOUR
AU  - V. Kadets
AU  - A. Leonov
TI  - Dominated convergence and Egorov theorems for filter convergence
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2007
SP  - 196
EP  - 212
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2007_3_2_a3/
LA  - en
ID  - JMAG_2007_3_2_a3
ER  - 
%0 Journal Article
%A V. Kadets
%A A. Leonov
%T Dominated convergence and Egorov theorems for filter convergence
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2007
%P 196-212
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2007_3_2_a3/
%G en
%F JMAG_2007_3_2_a3
V. Kadets; A. Leonov. Dominated convergence and Egorov theorems for filter convergence. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007) no. 2, pp. 196-212. http://geodesic.mathdoc.fr/item/JMAG_2007_3_2_a3/

[1] J. Connor, “$R$-type Summability Methods, Cauchy Criteria, $P$-Sets and Statistical Convergence”, Proc. Amer. Math. Soc., 115:2 (1992), 319–327 | MR | Zbl

[2] J. Connor, “Two Valued Measures and Summability”, Analysis, 10 (1990), 373–385 | DOI | MR | Zbl

[3] J. Connor, “A Topological and Functional Analytic Approach to Statistical Convergence”, Analysis of Divergence (Orono, ME, 1997), Appl. Numer. Harmon. Anal., Birkhäuser, Boston, MA, 1999, 403–413 | MR | Zbl

[4] J. Connor, J. Kline, “On Statistical Limit Points and the Consistency of Statistical Convergence”, J. Math. Anal. Appl., 197:2 (1996), 392–399 | DOI | MR | Zbl

[5] H. Fast, “Sur la Convergence Statistique”, Colloq. Math., 2 (1951), 241–244 | MR | Zbl

[6] D. H. Fremlin, Measure Theory, v. 4, Torres Fremlin, Colchester, 2003 | MR | Zbl

[7] J. Fridy, C. Orhan, “Lacunary Statistical Convergence”, Pacific J. Math., 160 (1993), 43–51 | DOI | MR | Zbl

[8] E. Kolk, “Matrix Summability of Statistically Convergent Sequences”, Analysis, 13:2 (1993), 77–83 | MR | Zbl

[9] H. Miller, “A Measure Theoretical Subsequence Characterization of Statistical Convergence”, Trans. Amer. Math. Soc., 347 (1995), 1811–1819 | DOI | MR | Zbl

[10] J. Rainwater, “Regular Matrices with Nowhere Dense Support”, Proc. Amer. Math. Soc., 29 (1971), 361 | DOI | MR | Zbl

[11] S. Todorcevic, Topics in Topology, Lect. Notes Math., 1652, Springer-Verlag, Berli, 1997 | MR | Zbl