@article{JMAG_2007_3_2_a1,
author = {O. Bershtein and A. Stolin and L. Vaksman},
title = {Spherical principal series of quantum {Harish-Chandra} modules},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {157--175},
year = {2007},
volume = {3},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2007_3_2_a1/}
}
TY - JOUR AU - O. Bershtein AU - A. Stolin AU - L. Vaksman TI - Spherical principal series of quantum Harish-Chandra modules JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2007 SP - 157 EP - 175 VL - 3 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2007_3_2_a1/ LA - en ID - JMAG_2007_3_2_a1 ER -
O. Bershtein; A. Stolin; L. Vaksman. Spherical principal series of quantum Harish-Chandra modules. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007) no. 2, pp. 157-175. http://geodesic.mathdoc.fr/item/JMAG_2007_3_2_a1/
[1] I. Damiani, C. De Concini, “Quantum Groups and Poisson Groups”, Representations of Lie Groups and Quantum Groups, eds. V. Baldoni, M. A. Picardello, 1994, 1–45 | MR | Zbl
[2] M. Evgrafov, Asymptotic Estimates and Entire Functions, Gordon and Breach, New York, 1961 | MR | Zbl
[3] S. Helgason, Groups and Geometrical Analysis, Academic Press, New York, 1984 | MR | Zbl
[4] J. Jantzen, Lectures on Quantum Groups, Amer. Math. Soc., Providence, RI, 1996 | MR
[5] A. Joseph, “Faithfully Flat Embeddings for Minimal Primitive Quotients of Quantized Enveloping Algebras”, Quantum Deformations of Algebras and their Representations, 7, eds. A. Joseph, S. Shnider, 1993, 79–106 | MR | Zbl
[6] A. Klimyk, K. Schmüdgen, Quantum Groups and Their Representations, Springer, Berlin, 1997 | MR
[7] A. Knapp, Representation Theory of Semisimple Groups. An overview based on examples, Princeton Univ. Press, Princeton, 1986 | MR | Zbl
[8] L. Korogodsky, Ya. Soibelman, Algebra of Fucntions on Quantum Groups, Part 1, Amer. Math. Soc., Providence, RI, 1998
[9] B. Kostant, “On the Existence and Irreducibility of Certain Series of Representations”, Lie Groups and their Representations, ed. I. Gelfand, 1975, 231–329 | MR | Zbl
[10] V. Lunts, A. Rosenberg, “Differential Operators on Noncommutative Rings”, Selecta Math. New Ser., 3 (1997), 335–359 | DOI | MR | Zbl
[11] V. Lunts, A. Rosenberg, “Localization for Quantum Groups”, Selecta Math. New Ser., 5 (1999), 123–159 | DOI | MR | Zbl
[12] G. Lusztig, “Quantum Groups at Roots of 1”, Geom. Dedicata, 35 (1990), 89–114 | DOI | MR | Zbl
[13] A. Malcev, Foundations of Linear Algebra, W. H. Freeman, San-Francisco, 1963 | MR
[14] V. Prasolov, Polynomials, Springer, Berlin, 2004 | MR | Zbl
[15] M. Rosso, “Représentations des Groupes Quantiques”, Séminaire Bourbaki, 201–203, 1992, 443–483 | MR
[16] W. Schmid, “Construction and Classification of Irreducible Harish–Chandra Modules”, Harmonic Analysis on Reductive Groups, 201–203, eds. W. Baker, P. Sally, 1991, 235–275 | DOI | MR
[17] S. Sinel'shchikov, L. Vaksman, A. Stolin, “Spherical Principal Nondegenerate Series of Representations for the Quantum Group $SU_{2,2}$”, Czechoslovak J. Phys., 51:12 (2001), 1431–1440 | DOI | MR | Zbl
[18] D. Shklyarov, S. Sinel'shchikov, A. Stolin, L. Vaksman, “Noncompact Quantum Groups and Quantum Harish–Chandra Modules”, Supersymmetry and Quantum Field Theory, Nucl. Phys. B, 102–103 (2001), 334–337 | MR | Zbl
[19] D. Shklyarov, S. Sinel'shchikov, L. Vaksman, On Function Theory in Quantum Disc: Integral Representations, Preprint, arXiv: 9808015[math.QA]
[20] M. Takeuchi, “Polynomial Representations Associated with Symmetric Bounded Domains”, Osaka J. Math., 10 (1973), 441–475 | MR | Zbl
[21] L. Vaksman, Quantum Bounded Symmetric Domains, Diss. $\dots$ d. ph.-m. sci., FTINT, Kharkov, 2005 (Russian)
[22] L. Vretare, “Elementary Spherical Functions on Symmetric Spaces”, Math. Scand., 39 (1976), 343–358 | MR