Spherical principal series of quantum Harish-Chandra modules
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007) no. 2, pp. 157-175 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The nondegenerate spherical principal series of quantum Harish-Chandra modules is constructed. These modules appear in the theory of quantum bounded symmetric domains.
@article{JMAG_2007_3_2_a1,
     author = {O. Bershtein and A. Stolin and L. Vaksman},
     title = {Spherical principal series of quantum {Harish-Chandra} modules},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {157--175},
     year = {2007},
     volume = {3},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2007_3_2_a1/}
}
TY  - JOUR
AU  - O. Bershtein
AU  - A. Stolin
AU  - L. Vaksman
TI  - Spherical principal series of quantum Harish-Chandra modules
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2007
SP  - 157
EP  - 175
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2007_3_2_a1/
LA  - en
ID  - JMAG_2007_3_2_a1
ER  - 
%0 Journal Article
%A O. Bershtein
%A A. Stolin
%A L. Vaksman
%T Spherical principal series of quantum Harish-Chandra modules
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2007
%P 157-175
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2007_3_2_a1/
%G en
%F JMAG_2007_3_2_a1
O. Bershtein; A. Stolin; L. Vaksman. Spherical principal series of quantum Harish-Chandra modules. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007) no. 2, pp. 157-175. http://geodesic.mathdoc.fr/item/JMAG_2007_3_2_a1/

[1] I. Damiani, C. De Concini, “Quantum Groups and Poisson Groups”, Representations of Lie Groups and Quantum Groups, eds. V. Baldoni, M. A. Picardello, 1994, 1–45 | MR | Zbl

[2] M. Evgrafov, Asymptotic Estimates and Entire Functions, Gordon and Breach, New York, 1961 | MR | Zbl

[3] S. Helgason, Groups and Geometrical Analysis, Academic Press, New York, 1984 | MR | Zbl

[4] J. Jantzen, Lectures on Quantum Groups, Amer. Math. Soc., Providence, RI, 1996 | MR

[5] A. Joseph, “Faithfully Flat Embeddings for Minimal Primitive Quotients of Quantized Enveloping Algebras”, Quantum Deformations of Algebras and their Representations, 7, eds. A. Joseph, S. Shnider, 1993, 79–106 | MR | Zbl

[6] A. Klimyk, K. Schmüdgen, Quantum Groups and Their Representations, Springer, Berlin, 1997 | MR

[7] A. Knapp, Representation Theory of Semisimple Groups. An overview based on examples, Princeton Univ. Press, Princeton, 1986 | MR | Zbl

[8] L. Korogodsky, Ya. Soibelman, Algebra of Fucntions on Quantum Groups, Part 1, Amer. Math. Soc., Providence, RI, 1998

[9] B. Kostant, “On the Existence and Irreducibility of Certain Series of Representations”, Lie Groups and their Representations, ed. I. Gelfand, 1975, 231–329 | MR | Zbl

[10] V. Lunts, A. Rosenberg, “Differential Operators on Noncommutative Rings”, Selecta Math. New Ser., 3 (1997), 335–359 | DOI | MR | Zbl

[11] V. Lunts, A. Rosenberg, “Localization for Quantum Groups”, Selecta Math. New Ser., 5 (1999), 123–159 | DOI | MR | Zbl

[12] G. Lusztig, “Quantum Groups at Roots of 1”, Geom. Dedicata, 35 (1990), 89–114 | DOI | MR | Zbl

[13] A. Malcev, Foundations of Linear Algebra, W. H. Freeman, San-Francisco, 1963 | MR

[14] V. Prasolov, Polynomials, Springer, Berlin, 2004 | MR | Zbl

[15] M. Rosso, “Représentations des Groupes Quantiques”, Séminaire Bourbaki, 201–203, 1992, 443–483 | MR

[16] W. Schmid, “Construction and Classification of Irreducible Harish–Chandra Modules”, Harmonic Analysis on Reductive Groups, 201–203, eds. W. Baker, P. Sally, 1991, 235–275 | DOI | MR

[17] S. Sinel'shchikov, L. Vaksman, A. Stolin, “Spherical Principal Nondegenerate Series of Representations for the Quantum Group $SU_{2,2}$”, Czechoslovak J. Phys., 51:12 (2001), 1431–1440 | DOI | MR | Zbl

[18] D. Shklyarov, S. Sinel'shchikov, A. Stolin, L. Vaksman, “Noncompact Quantum Groups and Quantum Harish–Chandra Modules”, Supersymmetry and Quantum Field Theory, Nucl. Phys. B, 102–103 (2001), 334–337 | MR | Zbl

[19] D. Shklyarov, S. Sinel'shchikov, L. Vaksman, On Function Theory in Quantum Disc: Integral Representations, Preprint, arXiv: 9808015[math.QA]

[20] M. Takeuchi, “Polynomial Representations Associated with Symmetric Bounded Domains”, Osaka J. Math., 10 (1973), 441–475 | MR | Zbl

[21] L. Vaksman, Quantum Bounded Symmetric Domains, Diss. $\dots$ d. ph.-m. sci., FTINT, Kharkov, 2005 (Russian)

[22] L. Vretare, “Elementary Spherical Functions on Symmetric Spaces”, Math. Scand., 39 (1976), 343–358 | MR