The asymptotic behavior of viscous incompressible fluid small oscillations with solid interacting particles
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007) no. 2, pp. 135-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The motion of viscous incompressible fluid with a large number of small solid interacting particles is considered. The asymptotic behavior of small oscillations of the system is studied, when the radii of particles, distances between the nearest particles and their interaction power are decreased in the prescribed way. The equations describing the homogenized model of the system are derived.
@article{JMAG_2007_3_2_a0,
     author = {M. A. Berezhnyi},
     title = {The asymptotic behavior of viscous incompressible fluid small oscillations with solid interacting particles},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {135--156},
     year = {2007},
     volume = {3},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2007_3_2_a0/}
}
TY  - JOUR
AU  - M. A. Berezhnyi
TI  - The asymptotic behavior of viscous incompressible fluid small oscillations with solid interacting particles
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2007
SP  - 135
EP  - 156
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2007_3_2_a0/
LA  - en
ID  - JMAG_2007_3_2_a0
ER  - 
%0 Journal Article
%A M. A. Berezhnyi
%T The asymptotic behavior of viscous incompressible fluid small oscillations with solid interacting particles
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2007
%P 135-156
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2007_3_2_a0/
%G en
%F JMAG_2007_3_2_a0
M. A. Berezhnyi. The asymptotic behavior of viscous incompressible fluid small oscillations with solid interacting particles. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (2007) no. 2, pp. 135-156. http://geodesic.mathdoc.fr/item/JMAG_2007_3_2_a0/

[1] L. Berlyand, E. Ya. Khruslov, The Asymptotic Behavior of Viscous Incompressible Fluid Small Oscillations with Solid Interacting Particles, No 2003–16, Pennsylvania State Univ., USA, 2003

[2] L. V. Berlyand, E. Ya. Khruslov, “Homogenized Non-Newtonian Viscoelastic Rheology of a Suspension of Interacting Particles in a Viscous Newtonian Fluid”, SIAM J. Appl. Math., 64:3 (2004), 1002–1034 | DOI | MR | Zbl

[3] M. A. Berezhnyi, L. V. Berlyand, “Continuum Limit for Three-Dimensional Mass-Spring Networks and Discrete Korn's Inequality”, J. Mech. and Phys. Sol., 54:3 (2006), 635–669 | DOI | MR

[4] M. A. Berezhnyi, “Small Oscillations of Viscous Incompressible Fluid with Small Solid Interacting Particles which Have a Large Density”, Mat. fiz., analiz, geom., 12 (2005), 131–147 (Russian) | MR

[5] A. I. Marcushevich, The Short Course of Theory of Analytic Functions, Nauka, Moscow, 1978 (Russian)