@article{JMAG_2006_2_4_a6,
author = {V. I. Khrabustovsky},
title = {On the characteristic operators and projections and on the solutions of {Weyl} type of dissipative and accumulative operator systems. {III.~Separated} boundary conditions},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {449--473},
year = {2006},
volume = {2},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2006_2_4_a6/}
}
TY - JOUR AU - V. I. Khrabustovsky TI - On the characteristic operators and projections and on the solutions of Weyl type of dissipative and accumulative operator systems. III. Separated boundary conditions JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2006 SP - 449 EP - 473 VL - 2 IS - 4 UR - http://geodesic.mathdoc.fr/item/JMAG_2006_2_4_a6/ LA - en ID - JMAG_2006_2_4_a6 ER -
%0 Journal Article %A V. I. Khrabustovsky %T On the characteristic operators and projections and on the solutions of Weyl type of dissipative and accumulative operator systems. III. Separated boundary conditions %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2006 %P 449-473 %V 2 %N 4 %U http://geodesic.mathdoc.fr/item/JMAG_2006_2_4_a6/ %G en %F JMAG_2006_2_4_a6
V. I. Khrabustovsky. On the characteristic operators and projections and on the solutions of Weyl type of dissipative and accumulative operator systems. III. Separated boundary conditions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006) no. 4, pp. 449-473. http://geodesic.mathdoc.fr/item/JMAG_2006_2_4_a6/
[36] V. I. Khrabustovsky, “On the Characteristic Operators and Projections and on the Solutions of Weyl Type of Dissipative and Accumulative Operator Systems. I: General Case”, J. Math. Phys., Anal., Geom., 2 (2006), 149–175 | MR | Zbl
[37] A. Dijksma, H. S. V. de Snoo, “Self-Adjoint Extensions of Symmetric Subspaces”, Pacific J. Math., 54:1 (1974), 71–100 | DOI | MR | Zbl
[38] Russian Acad. Sci. Docl. Math., 64:3 (2001), 393–397 | MR | Zbl
[39] M. Lesch, M. M. Malamud, “On the Deficiency Indices and Self-Adjointness of Symmetric Hamiltonian Systems”, J. Diff. Eq., 189:2 (2003), 556–615 | DOI | MR | Zbl
[40] M. A. Naimark, Linear Differential Operators. Part I. Elementary Theory of Linear Differential Operators, Frederick Ungar Publ. Co., New York, 1967, 144 pp. ; Part II. Linear Differential Operators in Hilbert Space, With additional material by the Author, and a supplement by V. E. Ljance.; Engl. Transl.: E. R. Dawson,, ed. W. N. Everitt, Frederick Ungar Publ. Co., New York, 1968, 352 pp. | MR | Zbl | MR