Homogenization of the Neumann–Fourier problem in a thick two-level junction of type 3:2:1
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006) no. 3, pp. 318-337 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{JMAG_2006_2_3_a5,
     author = {T. A. Mel'nik and P. S. Vashchuk},
     title = {Homogenization of the {Neumann{\textendash}Fourier} problem in a thick two-level junction of type 3:2:1},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {318--337},
     year = {2006},
     volume = {2},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2006_2_3_a5/}
}
TY  - JOUR
AU  - T. A. Mel'nik
AU  - P. S. Vashchuk
TI  - Homogenization of the Neumann–Fourier problem in a thick two-level junction of type 3:2:1
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2006
SP  - 318
EP  - 337
VL  - 2
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2006_2_3_a5/
LA  - en
ID  - JMAG_2006_2_3_a5
ER  - 
%0 Journal Article
%A T. A. Mel'nik
%A P. S. Vashchuk
%T Homogenization of the Neumann–Fourier problem in a thick two-level junction of type 3:2:1
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2006
%P 318-337
%V 2
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2006_2_3_a5/
%G en
%F JMAG_2006_2_3_a5
T. A. Mel'nik; P. S. Vashchuk. Homogenization of the Neumann–Fourier problem in a thick two-level junction of type 3:2:1. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006) no. 3, pp. 318-337. http://geodesic.mathdoc.fr/item/JMAG_2006_2_3_a5/

[1] Nauka, Moscow, 1984 | DOI | MR | Zbl | Zbl

[2] A. Bensoussan, J. Lions, G. Papanicolau, Asymptotic Analysis for Periodic Structure, North Holland, Amsterdam, 1978 | MR

[3] P. G. Ciarlet, Plates and Junctions in Elastic Multi-Structures, Masson, Paris, 1990 | MR | Zbl

[4] D. Cioranescu, J. Saint Jean Paulin, Homogenization of Reticulated Structures, Ser. Appl. Math. Sci., 136, Springer-Verlag, 1999 | DOI | MR | Zbl

[5] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, Berlin–Heidelberg, 1994 | MR

[6] A. A. Kovalevskij, “Averaging of the Neumann Problems for Nonlinear Elliptic Equations in Domains with Accumulators”, Ukr. Mat. Zh., 47:2 (1995), 194–212 (Russian) | MR | Zbl

[7] V. A. Kozlov, V. G. Maz'ya, A. B. Movchan, “Asymptotic Representation of an Elastic Field in a Multi-Structure”, Asymp. Anal., 11 (1995), 343–415 | MR | Zbl

[8] V. A. Marchenko, E. Ya. Khruslov, Boundary-Value Problems in Domains with Finegrained Boundary, Naukova Dumka, Kiev, 1974 (Russian)

[9] S. A. Nazarov, Asymptotic Analysis of the Thin Plates and Rods, v. 1, Novosibirsk, 2002 (Russian)

[10] O. A. Oleinik, G. A. Yosifyan, A. S. Shamaev, Mathematical Problems to Theories Powerfully Lumpy Springy Ambiences, Izd-vo MGU, Moscow, 1990 (Russian)

[11] O. A. Oleinik, T. A. Shaposhnikova, “On the One Method of Approach in the Problem of the Averaging in Partly Perforated Domains”, Diff. Eq., 30:11 (1994), 1994–2000 (Russian) | MR | Zbl

[12] O. A. Oleinik, T. A. Shaposhnikova, “On the Aaveraging of the Poisson Equation in the Partly Perforated Domains with the Mixed Type of Conditions on Boundary of the Cavities for all their Concentration”, Rendiconti Lincei: Matematica e Applicazioni, 7 (1996), 129–146 | MR | Zbl

[13] J. Sanchez-Hubert, E. Sanchez-Palencia, Vibration and Coupling of Continuous Systems, Springer-Verlag, Berlin–Heidelberg, 1989 | MR | Zbl

[14] I. V. Skrypnyk, The Methods of the Investigation of the Nonlinear Elliptical Boundary-Value Problems, Nauka, Moscow, 1990 (Russian)

[15] F. Fleury, E. Sanchez–Palencia, “Asymptotic and Spectral Properties of the Acoustic Vibrations of Body Perforated by Narrow Channels”, Bull. Sci. Math., 2:110 (1986), 149–176 | MR

[16] G. A. Chechkin, A. Friedman, A. Piatnitski, “The Boundary-Value Problem in Domains with Very Rapidly Oscillating Boundary”, J. Math. Anal. Appl., 231 (1999), 213–234 | DOI | MR | Zbl

[17] V. P. Kotliarov, E. Ya. Khruslov, “On a Limit Boundary Condition of Some Neumann Problem”, Teor. Funkts., Funkts. Anal. i Prilozh., 1970, no. 10, 83–96 (Russian)

[18] G. V. Suzikov, E. Ya. Khruslov, “On Advancing Sound Waves Through Narrow Channels in a Reflacting Layer”, Teor. Funkts., Funkts. Anal. i Prilozh., 1976, no. 5, 35–49 (Russian)

[19] E. Ya. Khruslov, “On the Resonance Phenomenas in One Problem of Diffraction”, Teor. Funkts., Funkts. Anal. i Prilozh., 10 (1968), 113–120 (Russian)

[20] T. A. Mel'nyk, S. A. Nazarov, “Asymptotic Structure of the Spectrum of the Neumann Problem in a Thin Comb-Like Domain”, C.R. Acad. Sci. Paris, Ser. 1, 319 (1994), 1343–1348 | MR | Zbl

[21] T. A. Mel'nyk, S. A. Nazarov, “On the Asymptotics of Eigenvalues of the Neumann Problem in a Domain of “Thick Comb””, Dokl. Russian Akad. Nauk, 342:1 (1995), 23–25 (Russian) | MR

[22] J. Math. Sci., 85:6 (1997), 2326–2346 | DOI | MR

[23] T. A. Mel'nyk, “Homogenization of the Poisson Equation in a Thick Periodic Junction”, Zeitschrift für Analysis und ihre Anwendungen, 18:4 (1999), 953–975 | DOI | MR | Zbl

[24] T. A. Mel'nyk, “Asymptotic Analysis of a Spectral Problem in a Periodic Thick Junction of Type 3:2:1”, Math. Meth. Appl. Sci., 23:4 (2000), 321–346 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[25] St.-Petersburg Math. J., 12:2 (2001), 317–351 | MR | Zbl

[26] Ukr. Math. J., 52:11 (2000), 1737–1749 | DOI | MR

[27] T. A. Mel'nyk, “Asymptotic Behavior of Eigenvalues and Eigenfunctions of the Steklov Problem in a Thick Periodic Junction”, Nonlinear Oscillations, 4:1 (2001), 91–105 | MR | Zbl

[28] T. A. Mel'nyk, “Asymptotic Behavior of Eigenvalues and Eigenfunctions of the Fourier Problem in a Thick Periodic Junction of Type 3:2:1”, Grouped and Anal. Meth. Math. Physics, 36, Akad. Nauk Ukr., Kiev, 2001, 187–196 | MR | Zbl

[29] T. A. Mel'nyk, “Vibrations of a Thick Periodic Junction with Concentrated Masses”, Math. Models, Methods Appl. Sci., 11:6 (2001), 1001–1029 | DOI | MR

[30] S. A. Nazarov, “Junctions of Singularly Degenerating Domains with Different Limit Demension, I”, Tr. Sem. im. I. G. Petrovskogo, 18, 1995, 1–78 ; “II”, 155–196, Tr. Sem. im. I. G. Petrovskogo, 20, 2000 (Russian) | MR

[31] T. A. Mel'nyk, “Eigenmodes and Pseudo-Eigenmodes of Thick Multi-Level Junctions”, Proc. Int. Conf. “Days on Diffraction-2004”, 11, 2004, 51–52

[32] T. A. Mel'nyk, “Asymptotic Behavior of Eigenvalues and Eigenfunctions of the Fourier Problem in a Thick Multi-Level Junction”, Ukr. Math. J., 58:2 (2006), 195–216 | MR | Zbl

[33] U. De Maio, T. A. Mel'nyk, C. Perugia, “Homogenization of the Robin Problem in a Thick Multi-Level Junction”, Nonlinear Oscillations, 7:3 (2004), 336–356 | DOI | MR

[34] T. A. Mel'nyk, P. S. Vashchuk, “Homogenization of the Boundary-Value Problem with Varying Type of Boundary Conditions in a Thick Multi-Level Junction”, Nonlinear Oscillations, 8:2 (2005), 241–257 | MR | Zbl

[35] U. De Maio, T. Durante, T. A. Mel'nyk, “Asymptotic Approximation for the Solution to the Robin Problem in a Thick Multi-Level Junction”, Math. Models, Methods Appl. Sci., 15:12 (2005), 1897–1921 | DOI | MR | Zbl

[36] R. Brizzi, J. P. Chalot, “Boundary Homogenization and Neumann Boundary Value Problem”, Ricerche di Matimatica, 46 (1997), 341–387 | MR | Zbl

[37] T. A. Mel'nyk, “Averaging of Elliptic Equations Describing the Processes in Strongly Non-Uniform Thin Perforated Domains with Rapidly Varying Thickness”, Dokl. Akad. Nauk UkrSSR, 1991, no. 10, 15–19 (Russian) | MR