Meromorphic traveling wave solutions of the Kuramoto–Sivashinsky equation
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006) no. 3, pp. 278-286 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{JMAG_2006_2_3_a2,
     author = {Alexandre Eremenko},
     title = {Meromorphic traveling wave solutions of the {Kuramoto{\textendash}Sivashinsky} equation},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {278--286},
     year = {2006},
     volume = {2},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2006_2_3_a2/}
}
TY  - JOUR
AU  - Alexandre Eremenko
TI  - Meromorphic traveling wave solutions of the Kuramoto–Sivashinsky equation
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2006
SP  - 278
EP  - 286
VL  - 2
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2006_2_3_a2/
LA  - en
ID  - JMAG_2006_2_3_a2
ER  - 
%0 Journal Article
%A Alexandre Eremenko
%T Meromorphic traveling wave solutions of the Kuramoto–Sivashinsky equation
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2006
%P 278-286
%V 2
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2006_2_3_a2/
%G en
%F JMAG_2006_2_3_a2
Alexandre Eremenko. Meromorphic traveling wave solutions of the Kuramoto–Sivashinsky equation. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006) no. 3, pp. 278-286. http://geodesic.mathdoc.fr/item/JMAG_2006_2_3_a2/

[1] R. Conte, A. Fordy, A. Picketring, “A Perturbative Painlevé Approach to Nonlinear Differential Equations”, Physica D, 69 (1993), 33–58 | DOI | MR | Zbl

[2] R. Conte, M. Musette, “Painlevé Analysis and Bäcklund Transformation in the Kuramoto–Sivashinsky equation”, J. Phys. A, 22 (1989), 169–177 | DOI | MR | Zbl

[3] Y. M. Chiang, R. G. Halburd, “On the meromorphic solutions of an equation of Hayman”, J. Math. Anal. Appl., 281 (2003), 663–677 | DOI | MR | Zbl

[4] AMS Transl., (2)133 (1986), 15–23 | MR | Zbl

[5] A. E. Eremenko, “Meromorphic Solutions of Algebraic Differential Equations”; Engl. transl.: Russian Math. Surveys, 37:4 (1982), 61–95 ; “Correction”, 38:6 (1983) | DOI | MR | Zbl | MR | Zbl

[6] A. E. Eremenko, “Meromorphic Solutions of Algebraic Differential Equations of First Order”, Funct. Anal. and its Appl., 18:3 (1984), 246–248 | DOI | MR | Zbl

[7] A. A. Goldberg, B. Ya. Levin, I. V. Ostrovskii, “Entire and Meromorphic Functions”, Complex Analysis, I, Encyclopaedia Math. Sci., 85, Springer, Berlin, 1997 | MR

[8] A. A. Goldberg, I. V. Ostrovskii, Distribution of Values of Meromorphic Functions, Nauka, Moscow, 1970 (Russian) | MR

[9] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964 | MR | Zbl

[10] A. N. W. Hone, “Nonexistence of Elliptic Traveling Wave Solutions of the Complex Ginzburg–Landau Equation”, Physica D (to appear)

[11] J. Appl. Math. Mech., 52 (1988), 361–365 | DOI | MR

[12] N. A. Kudryashov, “Exact Solutions of the Generalized Kuramoto–Sivashinsky Equation”, Phys. Lett. A, 147 (1990), 287–291 | DOI | MR

[13] Y. Kuramoto, T. Tsuzuki, “Persistent Propagation of Concentration Waves in Dissipative Media Far from Thermal Equilibrium”, Progr. Theor. Phys., 55 (1976), 356–369 | DOI | MR

[14] S. Lang, Introduction to complex hyperbolic spaces, Springer-Verlag, New York, 1987 | MR

[15] R. Nevanlinna, Le théorème de Picard–Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1929 | Zbl

[16] R. Nevanlinna, Eindeutige Analytische Funktionen, 2 Aufl., Springer-Verlag, Berlin, 1953 | MR

[17] O. Thual, U. Frisch, “Natural Boundary in the Kuramoto Model”, Combustion and Nonlinear Phenomena, eds. P. Clavin and al., Éditions de Physique, Les Ulis, 1986, 327–336

[18] H. Wittich, Neuere Untersuchungen über eindeutige analytische Funktionen, Springer-Verlag, Berlin, 1955 | MR | Zbl

[19] T.-L. Yee, R. Conte, M. Musette, “Sur la “solution analytique générale” d'une équation différentielle chaotique du troisème ordre”, From Combinatorics to Dynamical Systems, IRMA Lect. Math. Theor. Phys., 3, de Gruyter, Berlin, 2003, 195–212 | MR | Zbl