Aleksej Vasil'evich Pogorelov is a mathematician of surprising forse
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006) no. 3, pp. 231-267 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is described principal mathematical results, obtained by great mathematician A. V. Pogorelov and his life.
@article{JMAG_2006_2_3_a0,
     author = {A. A. Borisenko},
     title = {Aleksej {Vasil'evich} {Pogorelov} is a mathematician of surprising forse},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {231--267},
     year = {2006},
     volume = {2},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2006_2_3_a0/}
}
TY  - JOUR
AU  - A. A. Borisenko
TI  - Aleksej Vasil'evich Pogorelov is a mathematician of surprising forse
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2006
SP  - 231
EP  - 267
VL  - 2
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2006_2_3_a0/
LA  - ru
ID  - JMAG_2006_2_3_a0
ER  - 
%0 Journal Article
%A A. A. Borisenko
%T Aleksej Vasil'evich Pogorelov is a mathematician of surprising forse
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2006
%P 231-267
%V 2
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2006_2_3_a0/
%G ru
%F JMAG_2006_2_3_a0
A. A. Borisenko. Aleksej Vasil'evich Pogorelov is a mathematician of surprising forse. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006) no. 3, pp. 231-267. http://geodesic.mathdoc.fr/item/JMAG_2006_2_3_a0/

[1] A. D. Aleksandrov, Intrinsic Geometry of Convex Surfaces, Gostehizdat, Moscow, 1948 (Russian) | MR

[2] A. D. Aleksandrov, Convex Polytopes, Gostehizdat, Moscow, 1950 (Russian) | Zbl

[3] N. V. Efimov, V. A. Zalgaller, A. V. Pogorelov, “Aleksandr Danilovich Aleksandrov (to 50-th Birthday)”, Usp. Mat. Nauk, 17:6(108) (1962), 171–184 (Russian) | MR | Zbl

[4] A. V. Pogorelov, “One Theorem about Geodesic on Closed Convex Surface”, Mat. Sb., 18(6):1 (1946), 181–183 (Russian) | MR | Zbl

[5] A. V. Pogorelov, “Quasigeodesic Lines on Convex Surface”, Mat. Sb., 25(67):2 (1949), 275–306 (Russian) | MR | Zbl

[6] A. V. Pogorelov, Extrinsic Geometry of Convex Surface, Nauka, Moscow, 1969 (Russian) | MR

[7] A. V. Pogorelov, Rigity of General of Convex Surface, Izd-vo AN UkrSSR, Kiev, 1951 (Russian)

[8] Yu. A. Volkov, “Estimation of the Deformation of a Convex Surface as Dependent on the Change of its Inner Metric”, Dokl. Akad Nauk USSR, 9 (1968), 260–263 (Russian) | Zbl

[9] S. N. Bernstein, Research and Integration of Elliptic Equations, Comm. Kharkov Math. Soc. Kharkov, 11, 1910 (Russian)

[10] A. V. Pogorelov, “On the Regularity of a Convex Surface with a Regular Metric”, Dokl. Akad. Nauk USSR, LXVII:6 (1949), 1051–1053 (Russian) | MR

[11] A. V. Pogorelov, “Regularity of Convex Surface”, Zap. Mat. Otd. Fiz.-Mat. Fakult. Kharkov Univ., XXII (1950), 5–49 (Russian) | MR

[12] A. V. Pogorelov, “On the Problem of the Regularity of a Convex Surface with a Regular Metric in Euclidean Space”, Dokl. Akad. Nauk USSR, 2 (1961), 235–237, 1020–1022 (Russian) | MR | Zbl

[13] L. Nirenberg, “The Weyl and Minkowski Problems in Differential Geometry in the Large”, Comm. Pure Appl. Math., 6 (1953), 337–394 | DOI | MR | Zbl

[14] L. Nirenberg, “On Nonlinear Elliptic Partial Differential Equations and Hölder Continuity”, Comm. Pure Appl. Math., 6 (1953), 103–157 | DOI | MR

[15] I. Kh. Sabitov, “The Regularity of Convex Regions with a Metric that is Regular in the Holder Classes”, Sib. Mat. Zh., 18 (1976), 907–916 (Russian) | MR

[16] I. Kh. Sabitov, S. Z. Shefel, “On the Connections between the Smoothness Orders of a Surface and its Metric”, Sib. Mat. Zh., 18:4 (1976), 916–925 (Russian) | MR

[17] A. V. Pogorelov, “Regularity of a Convex Surface with a Regular Given Gauss Curvature”, Mat. Sb., 31(73):1 (1952), 88–103 (Russian) | MR | Zbl

[18] A. V. Pogorelov, Some Questions of Global Geometry in Riemannian Space, Izd-vo Kharkov Univ., Kharkov, 1957 (Russian) | MR

[19] A. V. Pogorelov, “Extrinsic Curvature of Smooth Surfaces”, Dokl. Akad. Nauk USSR, 89:3 (1953), 407–409 (Russian) | MR | Zbl

[20] J. Nash, “$C^1$-Isometric Imbeddings”, Ann. Math., 3:1 (1954), 383–396 | DOI | MR

[21] A. V. Pogorelov, “The Dirichlet Problem for the Generalized Solutions of the Multidimensional Monge–Ampére Equation of Elliptic Type”, Dokl. Akad. Nauk USSR, 270:2 (1983), 285–288 (Russian) | MR | Zbl

[22] A. V. Pogorelov, “The Maximum Principle for the Generalized Solutions of the Equations $\theta(\Delta z,z,x)\det\Vert z_{i,j}\Vert= \varphi(x)$”, Dokl. Akad. Nauk USSR, 271:5 (1983), 1064–1066 (Russian) | MR | Zbl

[23] A. V. Pogorelov A Priori Estimates for the Solutions of the Equation $\det\Vert z_{i,j}\Vert= \varphi(z_1,\dots,z_n, z,x_1,\dots,x_n)$, Dokl. Akad. Nauk USSR, 274:5 (1984), 792–794 (Russian) | MR

[24] A. V. Pogorelov, “The Existence of a Closed Convex Hypersurface with a Prescribed Curvature”, Dokl. Akad. Nauk USSR, 274:5 (1984), 28–31 (Russian) | MR | Zbl

[25] A. V. Pogorelov, “Regularity of the Generalized Solution of the Equations $\det\Vert u_{i,j}\Vert\theta(\Delta u,u,x)=\varphi(x)$”, Dokl. Akad. Nauk USSR, 275:1 (1984), 26–28 (Russian) | MR | Zbl

[26] Rev. Math. Math. Phys., 10 (1995), 1 | MR | Zbl

[27] A. V. Pogorelov, The Minkovski Multidimensional Problem, Nauka, Moscow, 1975 (Russian) | MR | Zbl

[28] H. Levy, “On Differential Geometry on the Large, I”, Trans. Am. Math. Soc., 43:2 (1938), 258–270 | MR

[29] A. V. Pogorelov, “An a Priori Estimate for the Principal Radii of Curvature of a Closed Convex Hypersurface in Terms of their Mean Values”, Dokl. Akad. Nauk USSR, 10:3 (1969), 516–518 (Russian) | MR | Zbl

[30] A. V. Pogorelov, “The Existence of a Closed Convex Hypersurface with a Prescribed Function of the Principal Radii of the Curvature”, Dokl. Akad. Nauk USSR, 193:3 (1971), 526–528 (Russian) | MR

[31] E. Calabi, “Improper Affine Hyperspheres of Convex Type and a Generalizations of Theorems by K. Jördens”, Michigan Mat. J., 5:2 (1958), 105–126 | DOI | MR | Zbl

[32] S. Yu. Cheng, S. T. Yau, “On the Regularity of the Solution of the $n$-Dimensional Minkowski Problem”, Comm. Pure Appl. Math., XXIX:5 (1976), 495–516 | DOI | MR | Zbl

[33] S. Yu. Cheng, S. T. Yau, “On the Regularity of the Monge–Ampere Equation $\det\frac{\partial^2u}{\partial x_i\partial x_j}=F(x,u)$”, Comm. Pure Appl. Math., XXX:1 (1977), 41–68 | DOI | MR | Zbl

[34] S. Yu. Cheng, S. T. Yau, “On the Ricci Curvature of a Compact Kähler Manifold and the Complex Monge–Ampere Equation”, Comm. Pure Appl. Math., XXXI:3 (1978), 339–412 | MR

[35] L. A. Caffarelli, “A Priori Estimates and the Geometry of the Monge-Ampére Equation”, Nonlinear Differential Equations in Differential Geometry, IAS/ Park Sity Math. Ser., 2, eds. R. Hardt, M. Wolf, AMS, Providence, RI, 1996, 5–64 | MR

[36] L. A. Caffarelli, L. Nirenberg, J. Spruck, “The Dirichlet Problem for Nonlinear Second-Order Elliptic Equations. I: Monge–Ampere Equation”, Comm. Pure Appl. Math., XXXVII:3 (1984), 369–402 | DOI | MR | Zbl

[37] P. Guan, N. S. Trudinger, X.-J. Wang, “The Dirichlet Problem for Degenerate Monge–Ampére Equation”, Acta Math., 182, 87–104 | MR | Zbl

[38] W. Sheng, J. Urbas, X.-J. Wang, “Interior Curvature Bounds for a Class of Curvature Equations”, Duke Math. J., 123:2 (2004), 235–264 | DOI | MR | Zbl

[39] L. A. Caffarelli, “Nonlinear Elliptic Theory and the Monge–Ampere Equations”, Proc. Int. Congr. Math., 1 (2002), 179–187 | MR

[40] A. V. Pogorelov, Fourth Hilbert Problem, Nauka, Moscow, 1974 (Russian) | MR

[41] A. V. Pogorelov, “Busemann Regular $G$-Spaces”, Rev. Math. Math. Phys., 10:4 (1998), 1–102