@article{JMAG_2006_2_2_a6,
author = {V. A. Zolotarev},
title = {Isometric expansions of quantum algebra of linear bounded operators},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {207--224},
year = {2006},
volume = {2},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2006_2_2_a6/}
}
V. A. Zolotarev. Isometric expansions of quantum algebra of linear bounded operators. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006) no. 2, pp. 207-224. http://geodesic.mathdoc.fr/item/JMAG_2006_2_2_a6/
[1] Yu. S. Samoilenko, The Spectral Theory of the Sets of Selfadjoined Operators, Naukova dumka, Kiev, 1984 (Russian) | MR
[2] M. S. Livs̆ic, A. A. Yantsevich, The Theory of Operator Colligations in the Hilbert Spaces, Publ. Kharkov Univ., Kharkov, 1971 (Russian) | MR
[3] B. Szekefalvi-Nagy, Ch. Foyaş, Harmony Analisys of Operators in the Hilbert Space, Mir, Moscow, 1970 (Russian)
[4] V. A. Zolotarev, Analytic Methods of Spectral Representations of Non-Selfadjoint and Nonunitary Operators, MagPress, Kharkov, 2003 (Russian)
[5] M. S. Livs̆ic, N. Kravitsky, A. Markus, V. Vinnikov, Theory of Commuting Non-Selfadjoint Operators, Math. and Appl., 332, Kluver Acad. Publ. Groups, Dordrecht, 1995 | MR | Zbl
[6] V. A. Zolotarev, “Time Cones and Functional Model on the Riemann Surface”, Mat. Sb., 181 (1990), 965–995 (Russian)
[7] V. A. Zolotarev, “The Lax–Phillips Scattering Scheme on Groups and Functional Models of the Lie Algebras”, Mat. Sb., 183 (1992), 115–144 (Russian) | MR | Zbl
[8] V. A. Zolotarev, “Isometric Expansions of Commutative Systems of Linear Operators”, Mat. fiz., analiz, geom., 11 (2004), 282–301 (Russian) | MR | Zbl
[9] M. A. Rieffel $C^*$-Algebras Associated with Irrational Rotations, Pasific J. Math., 93 (1981), 415–429 | DOI | MR | Zbl
[10] A. Connes, Noncommutative Geometry, Acad. Press, New York–London, 1994 | MR | Zbl
[11] A. Klimyk, K. Schmutgen, Quantum Groups and their Representations, Springer, Berlin, 1997 | MR