@article{JMAG_2006_2_2_a3,
author = {V. I. Khrabustovsky},
title = {On the characteristic operators and projections and on the solutions of {Weyl} type of dissipative and accumulative operator systems. {I.~General} case},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {149--175},
year = {2006},
volume = {2},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2006_2_2_a3/}
}
TY - JOUR AU - V. I. Khrabustovsky TI - On the characteristic operators and projections and on the solutions of Weyl type of dissipative and accumulative operator systems. I. General case JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2006 SP - 149 EP - 175 VL - 2 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2006_2_2_a3/ LA - en ID - JMAG_2006_2_2_a3 ER -
%0 Journal Article %A V. I. Khrabustovsky %T On the characteristic operators and projections and on the solutions of Weyl type of dissipative and accumulative operator systems. I. General case %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2006 %P 149-175 %V 2 %N 2 %U http://geodesic.mathdoc.fr/item/JMAG_2006_2_2_a3/ %G en %F JMAG_2006_2_2_a3
V. I. Khrabustovsky. On the characteristic operators and projections and on the solutions of Weyl type of dissipative and accumulative operator systems. I. General case. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006) no. 2, pp. 149-175. http://geodesic.mathdoc.fr/item/JMAG_2006_2_2_a3/
[1] V. I. Khrabustovsky, “On Characteristic Matrix of Weyl–Titchmarsh Type for Differential-Operator Equations which Contains the Spectral Parameter in Linearly or Nevanlinna's Manner”, Mat. fiz., analiz, geom., 10 (2003), 205–227 (Russian) | MR
[2] V. I. Gorbachuk, M. L. Gorbachuk, Boundary Value Problems for Operator-Differential Equations, Naukova Dumka, Kiev, 1984 (Russian) | MR | Zbl
[3] F. S. Rofe-Beketov, A. M. Khol'kin, Spectral Analysis of Differential Operators Interplay between Spectral and Oscillatory Properties, Izd-vo Priazovsk. Gos. Tech. Univ., Mariupol, 2001 (Russian) | MR
[4] F. Atkinson, Discrete and Continuous Boundary Problems, Mathematics in Science and Engineering, 8, Acad. Press, New York–London, 1964, 570 pp. ; Translated from the English by I. S. Iohvidov, G. A. Karal'nik. Edited and supplemented by I. S. Kac, M. G. Krein, Mir, Moscow, 1968, 749 pp. (Russian) | MR | Zbl | MR | Zbl
[5] F. S. Rofe-Beketov, “Square-Integrable Solutions, Self-Adjoint Extensions and Spectrum of Differential Systems. Differential Equations”, Proc. Intern. Conf., Uppsala, 1977 | MR
[6] AMS Transl., Ser. II, 16 (1960), 463–464 | MR
[7] A. V. Shtraus, “On Spectral Functions of an Even Order Differential Operator”, Dokl. Akad. Nauk SSSR, 115:1 (1957), 67–70 (Russian) | MR
[8] S. A. Orlov, “Description of the Green Functions of Canonical Differential Systems, I”, Teor. Funkts., Funkts. Anal. i Prilozh., 1989, no. 51, 78–88 ; “II”, no. 52, 33–39 (Russian); Engl. Transl.: J. Soviet Math., 52:5 (1990), 3372–3377 ; 6, 3500–3508 | MR | DOI | MR | Zbl
[9] Math. Notes, 24 (1979), 767–773 | DOI | MR | Zbl
[10] V. M. Bruk, “On Symmetric Relations Generated by a Differential Expression and Nonnegative Operator Function”, Funkts. Anal., Ul'yanovsk, 1980, no. 15, 33–44 (Russian) | MR | Zbl
[11] V. M. Bruk, “Generalized Resolvents of Symmetric Relations in a Space of Vector Functions”, Funkts. Anal., Ul'yanovsk, 1986, no. 26, 52–61 (Russian) | MR | Zbl
[12] F. S. Rofe-Beketov, A. M. Khol'kin, Spectral Analysis of Differential Operators. Interplay between Spectral and Oscillatory Properties, World Sci. Monogr. Ser. Math., 7, Singapore, 2005, 438 pp. | DOI | MR | Zbl
[13] Translated from the Russian by Amiel Feinstein, Transl. Math. Monogr., 39, AMS Transl., Providence, RI, 1975, 525 pp. | MR | MR | Zbl | Zbl
[14] AMS Transl. Ser. II, 72 (1968), 177–202 | DOI | MR | Zbl
[15] Russian Acad. Sci. Dokl. Math., 45:3 (1992), 563–566 | MR | Zbl
[16] A. L. Sakhnovich, “Dirac Type and Canonical Systems: Spectral and Weyl-Titchmarsh Matrix Functions, Direct and Inverse Problems”, Inverse Problems, 18:2 (2002), 331–348 | DOI | MR | Zbl
[17] J. Weidmann, Lineare Operatoren in Hilberträumen. Teil II. Anwendungen, Mathematische Leitfäden, B. G. Teubner, Stuttgart, 2003, 404 pp. (German) | DOI | MR | Zbl
[18] V. A. Derkach, M. M. Malamud, Weil Function of Hermite Operator and its Connection to Characteristic Function, Prepr. DonFTI No 85-9, 1985, 51 pp. (Russian)
[19] O. G. Storozh, “On Some Analytical and Asymptotic Properties of Weil Functions of Nonnegative Operator”, Math. Meth. Phisycomech. Fields, 43:4 (2000), 18–23 (Ukrainian) | MR | Zbl
[20] Ukr. Math. J., 41:10 (1990), 1117–1129 | DOI | MR | Zbl
[21] Math. USSR. Izv., 10 (1976), 565–613 | DOI | MR | Zbl
[22] Soviet Math. Dokl., 13 (1972), 1063–1067 | MR | Zbl
[23] M. G. Krein, “Introduction to the Geometry of Indefinite J-Spaces and to the Theory of Operators in Those Spaces”, The Second Summer Math. School (Katsiveli, June–July, 1964), Naukova Dumka, Kiev, 1965, 15–92 (Russian) | MR
[24] Transl. Math. Monogr. (by S. Smith, 43, AMS, Providence, RI, 1974, 386 pp. | MR
[25] John Wiley and Sons Ltd., Chichester, 1989, 304 pp. | MR | Zbl
[26] M. S. Brodskiy, Triangle and Jordan Representations of Linear Operators, Nauka, Moscow, 1969 (Russian)
[27] Proc. Roy. Soc., Edinburgh Sect., A74, 1975, 5–40 | MR
[28] Mir, Moscow, 1970
[29] A. J. Markushevich, Theory of Analytic Functions, v. I, Nauka, Moscow, 1967 (Russian) | MR
[30] T. Kato, Perturbation Theory for Linear Operators, Mir, Moscow, 1972 (Russian) | MR | Zbl
[31] eds. D. A. Vasil'kov, V. M. Alekseev, S. V. Fomin, Izd-vo Inostr. Lit., Moscow, 1962 | MR | MR | Zbl