On sets with extremely big slices
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006) no. 1, pp. 94-103
Cet article a éte moissonné depuis la source Math-Net.Ru
A new characterization of the Radon-Nikodym property in terms of sizes of slices and equivalent norms is presented. A property opposite to the Radon–Nikodym property is studied in the context of 1-unconditional sums of Banach spaces.
@article{JMAG_2006_2_1_a6,
author = {Yevgen Ivakhno},
title = {On sets with extremely big slices},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {94--103},
year = {2006},
volume = {2},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2006_2_1_a6/}
}
Yevgen Ivakhno. On sets with extremely big slices. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006) no. 1, pp. 94-103. http://geodesic.mathdoc.fr/item/JMAG_2006_2_1_a6/
[1] Y. Benyamini, J. Lindenstrauss, Geometric nonlinear functional analysis, v. 1, AMS Coll. Publ., 48, Providens, RI, 2000 | MR | Zbl
[2] J. Diestel, Sequences and series in Banach spaces, Graduate texts in Math., 92, Springer-Verlag, New York, 1984 | DOI | MR | Zbl
[3] I. K. Daugavet, “On a property of completely continuous operators in the space $C$”, Usp. Mat. Nauk, 18:5 (1963), 157–158 (Russian) | MR | Zbl
[4] V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin, D. Werner, “Banach spaces with the Daugavet property”, Trans. Amer. Math. Soc., 352 (2000), 855–873 | DOI | MR | Zbl
[5] D. Bilik, V. Kadets, R. Shvidkoy, D. Werner, “Narrow operators and the Daugavet property for ultraproducts”, Positivity, 9 (2005), 45–62 | DOI | MR | Zbl