@article{JMAG_2006_2_1_a5,
author = {A. R. Aliev},
title = {On the generalized solution of the boundary-value problem for the operator-differential equations of the second order with variable coefficients},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {87--93},
year = {2006},
volume = {2},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2006_2_1_a5/}
}
TY - JOUR AU - A. R. Aliev TI - On the generalized solution of the boundary-value problem for the operator-differential equations of the second order with variable coefficients JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2006 SP - 87 EP - 93 VL - 2 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2006_2_1_a5/ LA - en ID - JMAG_2006_2_1_a5 ER -
%0 Journal Article %A A. R. Aliev %T On the generalized solution of the boundary-value problem for the operator-differential equations of the second order with variable coefficients %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2006 %P 87-93 %V 2 %N 1 %U http://geodesic.mathdoc.fr/item/JMAG_2006_2_1_a5/ %G en %F JMAG_2006_2_1_a5
A. R. Aliev. On the generalized solution of the boundary-value problem for the operator-differential equations of the second order with variable coefficients. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006) no. 1, pp. 87-93. http://geodesic.mathdoc.fr/item/JMAG_2006_2_1_a5/
[1] J.-L. Lions, E. Madjenes, Nonhomogeneous boundary-value problems and their applications, Mir, Moscow, 1971 (Russian) | Zbl
[2] M. G. Gasimov, S. S Mirzoyev, “On the solvability of the boundary-value problems for the operator-differential equations of elliptic type of the second order”, Diff. Eq., 28 (1992), 651–661 (Russian) | MR
[3] A. R. Aliev, “Boundary-value problems for one class operator-differential equations of higher order with variable coefficients”, Mat. Zametki, 74 (2003), 803–814 (Russian) | DOI | MR | Zbl
[4] S. S. Mirzoyev, Questions of solvability theory of the boundary-value problems for the operator-differential equations in Hilbert space and spectral problems, connected with them, Diss....d. ph.-m. sc., BSU, Baku, 1994, 229 pp. (Russian)
[5] M. B. Orazov, “On the completeness of the systems of elementary solutions for some operator-differential equations on semiaxis and on segment”, Dokl. Akad. Nauk SSSR, 245 (1979), 788–792 (Russian) | MR | Zbl
[6] L. Bers, F. John, M. Shehter, Equations with partial derivatives, Mir, Moscow, 1966 (Russian) | Zbl