@article{JMAG_2006_2_1_a4,
author = {R. F. Efendiev},
title = {Complete solution of an inverse problem for one class of the high order ordinary differential operators with periodic coefficients},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {73--86},
year = {2006},
volume = {2},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2006_2_1_a4/}
}
TY - JOUR AU - R. F. Efendiev TI - Complete solution of an inverse problem for one class of the high order ordinary differential operators with periodic coefficients JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2006 SP - 73 EP - 86 VL - 2 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2006_2_1_a4/ LA - en ID - JMAG_2006_2_1_a4 ER -
%0 Journal Article %A R. F. Efendiev %T Complete solution of an inverse problem for one class of the high order ordinary differential operators with periodic coefficients %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2006 %P 73-86 %V 2 %N 1 %U http://geodesic.mathdoc.fr/item/JMAG_2006_2_1_a4/ %G en %F JMAG_2006_2_1_a4
R. F. Efendiev. Complete solution of an inverse problem for one class of the high order ordinary differential operators with periodic coefficients. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006) no. 1, pp. 73-86. http://geodesic.mathdoc.fr/item/JMAG_2006_2_1_a4/
[1] A. Melin, “Operator methods for inverse scattering on the real line”, Comm. Part. Diff. Eq., 10 (1985), 677–766 | DOI | MR | Zbl
[2] V. A. Marchenko, Sturm–Liouville operators and applications, Birkhauser, Basel, 1986 | MR | Zbl
[3] L. A. Pastur, V. A. Tkachenko, “An inverse problem for one class of onedimensional Shchrodinger's operators with complex periodic potentials”, Funkts. Anal. Prilozen., 54 (1990), 1252–1269 (Russian) | MR
[4] P. Deift, D. Trubowitz, “Inverse scattering on the line”, Comm. Pure Appl. Math., 32 (1979), 121–251 | DOI | MR | Zbl
[5] T. Aktosun, M. Klaus, “Inverse theory: problem on the line”, Ch. 2.2.4, Scattering, eds. E. R. Pike, P. C. Sabatier, Acad. Press, London, 2001
[6] M. G. Gasymov, “Spectral analysis of one-class nonselfadjoint ordinary differential operators with periodic coefficients”, Spectr. Theory Operators, 4, Publ. House “ELM”, Baku, 1982, 56–97 (Russian) | MR
[7] M. G. Gasymov, “Uniqueness of the solution of an inverse problem of scattering theory for one class of even order ordinary differential operators”, Dokl. Akad. Nauk USSR, 266 (1982), 1033–1036 (Russian) | MR | Zbl
[8] R. F. Efendiev, “An inverse problem for one class of ordinary differential operators with the periodic coefficients”, Mat. fiz., analiz, geom., 11 (2004), 114–121 (Russian) | MR | Zbl
[9] I. T. Gohberg, M. G. Crein, Introduction to the theory of linear nonselfadjoint operators, Nauka, Moscow, 1965 (Russian) | Zbl
[10] V. I. Smirnov, Course of higher mathematics, v. 4, GITTL, Moscow–Leningrad, 1951 (Russian)
[11] I. G. Khachatrian, “On existence of a transformation operator for high order differential equations, saving the asymptotic of solution”, Izv. Akad. Nauk ArmSSR, XIV:6 (1979) (Russian)