Complete solution of an inverse problem for one class of the high order ordinary differential operators with periodic coefficients
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006) no. 1, pp. 73-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The purpose of the present work is to solve the characterization problem, which consists of identification of necessary and sufficient conditions on the scattering data ensuring that the reconstructed potential belongs to particular class.
@article{JMAG_2006_2_1_a4,
     author = {R. F. Efendiev},
     title = {Complete solution of an inverse problem for one class of the high order ordinary differential operators with periodic coefficients},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {73--86},
     year = {2006},
     volume = {2},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2006_2_1_a4/}
}
TY  - JOUR
AU  - R. F. Efendiev
TI  - Complete solution of an inverse problem for one class of the high order ordinary differential operators with periodic coefficients
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2006
SP  - 73
EP  - 86
VL  - 2
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2006_2_1_a4/
LA  - en
ID  - JMAG_2006_2_1_a4
ER  - 
%0 Journal Article
%A R. F. Efendiev
%T Complete solution of an inverse problem for one class of the high order ordinary differential operators with periodic coefficients
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2006
%P 73-86
%V 2
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2006_2_1_a4/
%G en
%F JMAG_2006_2_1_a4
R. F. Efendiev. Complete solution of an inverse problem for one class of the high order ordinary differential operators with periodic coefficients. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006) no. 1, pp. 73-86. http://geodesic.mathdoc.fr/item/JMAG_2006_2_1_a4/

[1] A. Melin, “Operator methods for inverse scattering on the real line”, Comm. Part. Diff. Eq., 10 (1985), 677–766 | DOI | MR | Zbl

[2] V. A. Marchenko, Sturm–Liouville operators and applications, Birkhauser, Basel, 1986 | MR | Zbl

[3] L. A. Pastur, V. A. Tkachenko, “An inverse problem for one class of onedimensional Shchrodinger's operators with complex periodic potentials”, Funkts. Anal. Prilozen., 54 (1990), 1252–1269 (Russian) | MR

[4] P. Deift, D. Trubowitz, “Inverse scattering on the line”, Comm. Pure Appl. Math., 32 (1979), 121–251 | DOI | MR | Zbl

[5] T. Aktosun, M. Klaus, “Inverse theory: problem on the line”, Ch. 2.2.4, Scattering, eds. E. R. Pike, P. C. Sabatier, Acad. Press, London, 2001

[6] M. G. Gasymov, “Spectral analysis of one-class nonselfadjoint ordinary differential operators with periodic coefficients”, Spectr. Theory Operators, 4, Publ. House “ELM”, Baku, 1982, 56–97 (Russian) | MR

[7] M. G. Gasymov, “Uniqueness of the solution of an inverse problem of scattering theory for one class of even order ordinary differential operators”, Dokl. Akad. Nauk USSR, 266 (1982), 1033–1036 (Russian) | MR | Zbl

[8] R. F. Efendiev, “An inverse problem for one class of ordinary differential operators with the periodic coefficients”, Mat. fiz., analiz, geom., 11 (2004), 114–121 (Russian) | MR | Zbl

[9] I. T. Gohberg, M. G. Crein, Introduction to the theory of linear nonselfadjoint operators, Nauka, Moscow, 1965 (Russian) | Zbl

[10] V. I. Smirnov, Course of higher mathematics, v. 4, GITTL, Moscow–Leningrad, 1951 (Russian)

[11] I. G. Khachatrian, “On existence of a transformation operator for high order differential equations, saving the asymptotic of solution”, Izv. Akad. Nauk ArmSSR, XIV:6 (1979) (Russian)