Ruled surfaces in $E^n$
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006) no. 1, pp. 40-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{JMAG_2006_2_1_a2,
     author = {O. A. Goncharova},
     title = {Ruled surfaces in~$E^n$},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {40--61},
     year = {2006},
     volume = {2},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2006_2_1_a2/}
}
TY  - JOUR
AU  - O. A. Goncharova
TI  - Ruled surfaces in $E^n$
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2006
SP  - 40
EP  - 61
VL  - 2
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2006_2_1_a2/
LA  - ru
ID  - JMAG_2006_2_1_a2
ER  - 
%0 Journal Article
%A O. A. Goncharova
%T Ruled surfaces in $E^n$
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2006
%P 40-61
%V 2
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2006_2_1_a2/
%G ru
%F JMAG_2006_2_1_a2
O. A. Goncharova. Ruled surfaces in $E^n$. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006) no. 1, pp. 40-61. http://geodesic.mathdoc.fr/item/JMAG_2006_2_1_a2/

[1] V. F. Kagan, The foundation of the surfaces theory in the tensor presentation, OGIZ, Moscow–Leningrad, 1947 (Russian) | Zbl

[2] V. I. Shulikovskij, The classical differential geometry in the tensor presentation, Fizmatgiz, Moscow, 1963 (Russian)

[3] W. Blaschke, The differential geometry and geometrical foundation of the theory of relativity by Einsteins, ONTI, Moscow–Leningrad, 1935 (Russian)

[4] S. N. Krivoshapko, Torses and shells, Reference book, Univ. People Friendship Publ. House, Moscow, 1991 (Russian)

[5] A. V. Pogorelov, The extrinsic geometry of convex surfaces, Nauka, Moscow, 1969 (Russian) | MR

[6] V. A. Toponogov, “The Riemannian spaces with curvature limited from below”, Usp. Mat. Nauk, 14:1(85) (1985), 87–130 (Russian) | MR

[7] A. A. Borisenko, “On the constraction of continuous surface with stright line”, Ukr. Geom. Sb., 14 (1973), 21–24 (Russian) | MR | Zbl

[8] A. A. Borisenko, “On the parabolic surfaces in Euclidean space”, Ukr. Geom. Sb., 25 (1982), 3–5 (Russian) | MR | Zbl

[9] A. A. Borisenko, “On the cylindrical many-dimensional surfaces in Lobachevsky space”, Ukr. Geom. Sb., 33 (1990), 18–27 (Russian) | MR

[10] A. A. Borisenko, The intrinsic and the extrinsic geometry of many-dimensional submanifolds, Publ. House “Ekzamen”, Moscow, 2003 (Russian)

[11] V. Yu. Rovenskij, “The condition of decompositions ruled and parabolic surfaces in $S^m$ and $CP^m$”, Ukr. Geom. Sb., 32 (1989), 103–115 (Russian) | MR

[12] L. A. Masalstev, “On helicoidal surfaces in Euclidean space”, Ukr. Geom. Sb., 26 (1983), 100–103 (Russian)

[13] S. E. Con-Fossen, Some questions of the differential geometry in the “large”, Publ. House Fiz.-mat. Lit., Moscow, 1959 (Russian)

[14] I. Ya. Bakelman, A. L. Verner, B. E. Cantor, Introduction in the differential geometry in the “large”, Nauka, Moscow, 1973 (Russian) | Zbl

[15] A. A. Borisenko, “On compact surfaces of nonpositive extrinsic curvature in the spherical space”, Ukr. Geom. Sb., 17 (1975), 33–35 (Russian) | MR | Zbl

[16] A. A. Borisenko(jr.), The construction of globally-minimal submanifolds by method of calibrate, Doct. diss., MGU, Moscow, 1996 (Russian) | MR

[17] Yu. A. Aminov, The geometry of submanifolds, Naukova Dumka, Kiev, 2002 (Russian) | Zbl

[18] Yu. A. Aminov, “The surfaces in $E^4$ with Gauss curvature coincident with Gauss torsion up to the sign”, Mat. Zametki, 56 (1994), 1211–1245 (Russian) | MR