Topological properties of the set of admissible transformations of measures
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006) no. 1, pp. 9-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{JMAG_2006_2_1_a1,
     author = {S. S. Gabriyelyan},
     title = {Topological properties of the set of admissible transformations of measures},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {9--39},
     year = {2006},
     volume = {2},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2006_2_1_a1/}
}
TY  - JOUR
AU  - S. S. Gabriyelyan
TI  - Topological properties of the set of admissible transformations of measures
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2006
SP  - 9
EP  - 39
VL  - 2
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2006_2_1_a1/
LA  - en
ID  - JMAG_2006_2_1_a1
ER  - 
%0 Journal Article
%A S. S. Gabriyelyan
%T Topological properties of the set of admissible transformations of measures
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2006
%P 9-39
%V 2
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2006_2_1_a1/
%G en
%F JMAG_2006_2_1_a1
S. S. Gabriyelyan. Topological properties of the set of admissible transformations of measures. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (2006) no. 1, pp. 9-39. http://geodesic.mathdoc.fr/item/JMAG_2006_2_1_a1/

[1] J. Aaronson, M. Nadkarni, “L1 eigenvalues and L2 spectra of nonsingular transformations”, Proc. London Math. Soc., 55 (1987), 538–570 | DOI | MR | Zbl

[2] P. Billingsley, Convergence of probability measures, John Wiley and Sons Inc., New York–London–Sydney–Toronto, 1967 | MR

[3] N. Bourbaki, El'em'ents de Math'ematique. Livre VI. Int'egration, Hermann, Paris, 1969 | MR

[4] P. L. Brockett, “Admissible transformations of measures”, Semigroup Forum, 12 (1976), 21–33 | DOI | MR | Zbl

[5] G. Brown, W. Moran, “A dichotomy for infinite convolutions of discrete measures”, Proc. Cambridge Phil. Soc., 73 (1973), 307–316 | DOI | MR | Zbl

[6] R. Engelking, General topology, Panstwowe Wydawnictwo Naukowe, Warszawa, 1985 | MR

[7] S. S. Gabriyelyan, “Admissible transformations of measures”, J. Math. Phys., Anal., Geom., 1 (2005), 155–181 (Russian) | MR

[8] H. Heyer, Probability measures on locally compact groups, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | MR | Zbl

[9] B. Host, J.-F. Mela, F. Parreau, “Nonsingular transformations and spectral analysis of measures”, Bull. Soc. Math. France, 119:1 (1991), 33–90 | MR | Zbl

[10] K. Kuratowski, Topology, v. 1, Acad. Press, New York–London, 1966 | MR | Zbl

[11] G. W. Mackey, “Borel structure in groups and their duals”, Trans. Amer. Math. Soc., 85 (1957), 134–165 | DOI | MR | Zbl

[12] Y. Okazaki, “Admissible translates of measures on a topological group”, Mem. Fac. Sci. Kyushu Univ., A34 (1980), 79–88 | DOI | MR | Zbl

[13] F. Parreau, “Ergodicit'e et puret'e des produits de Riesz”, Ann. Inst. Fourier, 40 (1990), 391–405 | DOI | MR | Zbl

[14] T. S. Pitcher, “The admissible mean values of stochastic process”, Trans. Amer. Math. Soc., 108 (1963), 538–546 | DOI | MR | Zbl

[15] G. E. S̆ilov, B. L. Gurevic̆, Integral, measure and derivative. General theory, Nauka, Moscow, 1967 (Russian) | MR

[16] G. E. S̆ilov, Fan Dyk Tin', Integral, measure and derivative on linear spaces, Nauka, Moscow, 1967 (Russian) | MR

[17] A. V. Skorohod, “On admissible translations of measures in Hilbert space”, Theory Probab. Appl., 15 (1970), 577–598 | MR

[18] A. V. Skorohod, Integration in Hilbert space, Nauka, Moscow, 1975 (Russian) | MR