Totally geodesic submanifolds in the tangent bundle of a Riemannian 2-manifold
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 1 (2005) no. 1, pp. 116-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a full description of totally geodesic submanifolds in the tangent bundle of a Riemannian 2-manifold of constant curvature and present a new class of a cylinder-type totally geodesic submanifolds in the general case.
@article{JMAG_2005_1_1_a6,
     author = {Alexander Yampolsky},
     title = {Totally geodesic submanifolds in the tangent bundle of a {Riemannian} 2-manifold},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {116--139},
     year = {2005},
     volume = {1},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a6/}
}
TY  - JOUR
AU  - Alexander Yampolsky
TI  - Totally geodesic submanifolds in the tangent bundle of a Riemannian 2-manifold
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2005
SP  - 116
EP  - 139
VL  - 1
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a6/
LA  - en
ID  - JMAG_2005_1_1_a6
ER  - 
%0 Journal Article
%A Alexander Yampolsky
%T Totally geodesic submanifolds in the tangent bundle of a Riemannian 2-manifold
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2005
%P 116-139
%V 1
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a6/
%G en
%F JMAG_2005_1_1_a6
Alexander Yampolsky. Totally geodesic submanifolds in the tangent bundle of a Riemannian 2-manifold. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 1 (2005) no. 1, pp. 116-139. http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a6/

[1] M. T. K. Abbassi, A. Yampolsky, “Totally geodesic submanifolds transverse to fibers of the tangent bundle of a Riemannian manifold with Sasaki metric”, Math. Publ. Debrecen, 64 (2004), 129–154 | MR

[2] Russian Math. Surveys, 46:6 (1991), 55–106 | DOI | MR | Zbl

[3] P. Dombrowski, “On the geometry of tangent bundle”, J. Reine Angew. Math., 210:1–2 (1962), 73–88 | DOI | MR | Zbl

[4] O. Kowalski, “Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold”, J. Reine Angew. Math., 250 (1971), 124–129 | DOI | MR | Zbl

[5] M.-S. Liu, “Affine maps of tangent bundles with Sasaki metric”, Tensor N. S., 28 (1974), 34–42 | MR | Zbl

[6] P. Nagy, “On the tangent sphere bundlre of a Riemannian 2-manifold”, Tohôku Math. J., 29 (1977), 203–208 | DOI | MR | Zbl

[7] S. Sasaki, “On the differential geometry of tangent bundles of Riemannian manifolds”, Tohôku Math. J., 10 (1958), 338–354 | DOI | MR | Zbl

[8] S. Sasaki, “Geodesics on the tangent sphere bundle over space forms”, J. Reine Angew. Math., 288 (1976), 106–120 | DOI | MR | Zbl

[9] K. Sato, “Geodesics on the tangent bundle over space forms”, Tensor N. S., 32 (1978), 5–10 | MR | Zbl

[10] P. Walczak, “On totally geodesic submanifolds of the tangent bundles with Sasaki metric”, Bull. Acad Pol. Sci. Ser. Sci. Math., 28:3–4 (1980), 161–165 | MR | Zbl

[11] A. Yampolsky, “On totally geodesic vector fields on a submanifold”, Mat. fiz., analiz, geom., 1 (1994), 540–545 (Russian) | MR

[12] A. Yampolsky, “On the intrinsic geometry of a unit vector field”, Comm. Math. Univ. Carolinae, 43:2 (2002), 299–317 | MR | Zbl

[13] A. Yampolsky, “On extrinsic geometry of unit normal vector field of Riemannian hyperfoliation”, Math. Publ. Debrecen, 63 (2003), 555–567 | MR

[14] A. Yampolsky, “Full description of totally geodesic unit vector fields on 2-dimensional Riemannian manifolds”, Mat. fiz., analiz, geom., 11 (2004), 355–365 | MR | Zbl