On controllability problems for the wave equation on a half-plane
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 1 (2005) no. 1, pp. 93-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary and sufficient conditions for null-controllability and approximate null-controllability are obtained for the wave equation on a half-plane. Controls solving these problems are found explicitly. Moreover bang-bang controls solving the approximate null-controllability problem are constructed with the aid of the Markov power moment problem.
@article{JMAG_2005_1_1_a5,
     author = {L. V. Fardigola},
     title = {On controllability problems for the wave equation on a half-plane},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {93--115},
     year = {2005},
     volume = {1},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a5/}
}
TY  - JOUR
AU  - L. V. Fardigola
TI  - On controllability problems for the wave equation on a half-plane
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2005
SP  - 93
EP  - 115
VL  - 1
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a5/
LA  - en
ID  - JMAG_2005_1_1_a5
ER  - 
%0 Journal Article
%A L. V. Fardigola
%T On controllability problems for the wave equation on a half-plane
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2005
%P 93-115
%V 1
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a5/
%G en
%F JMAG_2005_1_1_a5
L. V. Fardigola. On controllability problems for the wave equation on a half-plane. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 1 (2005) no. 1, pp. 93-115. http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a5/

[1] I. Lasiecka, R. Triggiani, Control theory for partial differential equations: Continuous and approximation theories. 2. Abstract hyperbolic-like systems over a finite time horizon, Cambridge Univ. Press, Cambridge, 2000 | MR

[2] W. Krabs, G. Leugering, “On boundary controllability of one-dimension vibrating systems by $W^{1,p}_0$-controls for $p\in[0,\infty)$”, Math. Meth. Appl. Sci., 17 (1994), 77–93 | DOI | MR | Zbl

[3] M. Gutat, G. Leugering, “Solutions of $L^p$-norm-minimal control problems for the wave equation”, Comput. Appl. Math., 21 (2002), 227–244 | MR

[4] M. Negreanu, E. Zuazua, “Convergence of multigrid method for the controllability of a 1-d wave equation”, C.R. Math. Acad. Sci. Paris, 338:5 (2004), 413–418 | DOI | MR | Zbl

[5] M. Gutat, “Analytic solution of $L^\infty$-optimal control problems for the wave equation”, J. Optim. Theor. Appl., 114 (2002), 151–192

[6] H. O. Fattorini, Infinite dimensional optimization and control Theory, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[7] L. Schwartz, Théorie des distributions, parts I,II, Hermann, Paris, 1950–1951 | MR | Zbl

[8] S. G. Gindikin, L. R. Volevich, Distributions and convolution equations, Gordon and Breach Sci. Publ., Philadelphia, 1992 | MR | Zbl

[9] G. M. Sklyar, L. V. Fardigola, “The Markov power moment problem in problems of controllability and frequency extinguishing for the wave equation on a half-axis”, J. Math. Anal. Appl., 276 (2002), 109–134 | DOI | MR | Zbl

[10] G. M. Sklyar, L. V. Fardigola, “The Markov trigonometric moment problem in controllability problems for the wave equation on a half-axis”, Mat. fiz., analiz, geom., 9 (2002), 233–242 | MR | Zbl

[11] AMS, Providence, RI, 1977 | MR | Zbl

[12] V. I. Korobov, G. M. Sklyar, “Time optimality and the power moment problem”, Mat. Sb., 134:2 (1987), 186–206 | MR | Zbl