On the complex moment problem on radial rays
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 1 (2005) no. 1, pp. 74-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The complex moment problem in the case when the support of the measure lies on the algebraic curves $P_N=\{z\in\mathbb C:z^N-\bar z^N=0\}$, $N=1,2,3,\dots$, is studied. For $N=2,3$ the necessary and sufficient conditions of solvability are obtained and all solutions of the problem are described. It is shown how this problem for arbitrary $N$ is connected with the Hamburger moment problem with parameters.
@article{JMAG_2005_1_1_a4,
     author = {S. M. Zagorodnyuk},
     title = {On the complex moment problem on radial rays},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {74--92},
     year = {2005},
     volume = {1},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a4/}
}
TY  - JOUR
AU  - S. M. Zagorodnyuk
TI  - On the complex moment problem on radial rays
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2005
SP  - 74
EP  - 92
VL  - 1
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a4/
LA  - ru
ID  - JMAG_2005_1_1_a4
ER  - 
%0 Journal Article
%A S. M. Zagorodnyuk
%T On the complex moment problem on radial rays
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2005
%P 74-92
%V 1
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a4/
%G ru
%F JMAG_2005_1_1_a4
S. M. Zagorodnyuk. On the complex moment problem on radial rays. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 1 (2005) no. 1, pp. 74-92. http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a4/

[1] Y. Kilpi, “Über das Komplexe Momentenproblem”, Ann. Acad. Sci. Fenn. Ser. A, 236 (1957), 2–32 | MR

[2] J. Stochel, F. H. Szafraniec, “The complex moment problem and subnormality: A polar decomposition approach”, J. Func. Ann., 159 (1998), 432–491 | DOI | MR | Zbl

[3] J. Stochel, F. H. Szafraniec, “Algebraic operators and moments on algebraic sets”, Port. Math., 51:1 (1994), 25–45 | MR | Zbl

[4] J. Stochel, “Moment functions on real algebraic sets”, Ark. Mat., 30 (1992), 133–148 | DOI | MR | Zbl

[5] M. G. Krein, “The fundamental propositions of the theory of representations of Hermitian operators with deficiency index $(m,m)$”, Ukr. Mat. Zhurn., 1949, no. 2, 3–66 (Russian) | MR | Zbl

[6] F. R. Gantmacher, The theory of matrices, AMS Chelsea Publ., Providence, RI, 1998 | MR

[7] N. I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner Publ. Co., New York, 1965 | MR

[8] N. I. Akhiezer, M. G. Krein, On some questions of the moments theory, Nauchno-techn. Izdatelstvo Ukrainy, Kharkov, 1938 (Russian)