The power series $\sum_{n=0}^\infty n!\,z^n$ and holomorphic solutions of some differential equations in a Banach space
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 1 (2005) no. 1, pp. 53-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $A$ be a bounded operator on a Banach space. A question about the existence of holomorphic solutions of the equation $z^2Aw'+g(z)=w$ is studied. Moreover, general properties of power series of the form $\sum_{n=0}^\infty c_nA^nz^n$, $c_n\in\mathbb C$ are considered.
@article{JMAG_2005_1_1_a2,
     author = {S. L. Gefter and V. N. Mokrenyuk},
     title = {The power series $\sum_{n=0}^\infty n!\,z^n$ and holomorphic solutions of some differential equations in a {Banach} space},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {53--70},
     year = {2005},
     volume = {1},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a2/}
}
TY  - JOUR
AU  - S. L. Gefter
AU  - V. N. Mokrenyuk
TI  - The power series $\sum_{n=0}^\infty n!\,z^n$ and holomorphic solutions of some differential equations in a Banach space
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2005
SP  - 53
EP  - 70
VL  - 1
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a2/
LA  - ru
ID  - JMAG_2005_1_1_a2
ER  - 
%0 Journal Article
%A S. L. Gefter
%A V. N. Mokrenyuk
%T The power series $\sum_{n=0}^\infty n!\,z^n$ and holomorphic solutions of some differential equations in a Banach space
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2005
%P 53-70
%V 1
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a2/
%G ru
%F JMAG_2005_1_1_a2
S. L. Gefter; V. N. Mokrenyuk. The power series $\sum_{n=0}^\infty n!\,z^n$ and holomorphic solutions of some differential equations in a Banach space. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 1 (2005) no. 1, pp. 53-70. http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a2/

[1] E. A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1955 | MR | Zbl

[2] F. W. J. Olver, Asymptotics and special functions. Computer Science and Applied Mathematics, Academic Press, New York–London, 1974 | MR

[3] L. Euler, De Seriebus Divergentibus. Leonardi Euleri Opera Omnia I.14, Teubner, Leipzig–Berlin, 1925 | Zbl

[4] G. H. Hardy, Divergent Series, Clarendon Press, Oxford, 1949 | MR | Zbl

[5] J.-P. Ramis, Divergent series and asymptotic theories, au bulletin de la SMF, Societe Mathematique de France, French, 1993 | MR | Zbl

[6] V. Vazov, Asymptotic expansions of solutions of ordinary differential equations, Mir, Moscow, 1968 (Russian)

[7] M. V. Fedoryuk, Asymptotic methods for linear ordinary differential equations, Nauka, Moscow, 1983 (Russian) | MR | Zbl

[8] N. I. Shkil', I. I. Starun, V. P. Yakovets, Asymptotic integration of linear systems of ordinary differential equations, Vyshcha Shkola, Kiev, 1989 (Russian) | Zbl

[9] N. I. Shkil', I. I. Starun, V. P. Yakovets, Asymptotic integration of linear systems of ordinary differential equations with degeneracies, Vyshcha Shkola, Kiev, 1991 (Russian)

[10] E. Hille, R. S. Phillips, Functional analysis and semi-groups, AMS, Providence, RI, 1957 | MR | Zbl

[11] V. Volterra, Theory of functionals and of integral and integro-differential equations, Dover Publ., Inc., New York, 1959 | MR | Zbl

[12] I. C. Gohberg, M. G. Kre\u in, Theory of Volterra operators in Hilbert space and its applications, Nauka, Moscow, 1967 (Russian) | MR

[13] J. Pérès, Sur les fonctions permutables de premiere espece de M. Vito Volterra, These de doctorat, Gauthier-Villars, Paris, 1915

[14] V. Volterra, J. Pérès, Leçons sur la composition et les fonctions permutables, Gauthier-Villars, Paris, 1924 | Zbl

[15] S. L. Gefter, “On formal power series in Banach algebras”, Abstracts Int. Conf. Funct. Anal., 2001, 29–30, Kyiv (Russian)

[16] A. G. Rutkas, “The Cauchy problem for the equation $Ax'(t)+Bx(t)=f(t)$”, Diff. Uravn., 11 (1975), 1996–2010 (Russian) | MR | Zbl

[17] A. G. Rutkas, “Classification and properties of solutions of the equation $Ax'+Bx=f(t)$”, Diff. Uravn., 25 (1989), 1150–1155 | MR

[18] M. A. Krasnosel'skij, G. M. Vainikko, P. P. Zabrejko, Ya. B. Rutitskij, V. Ya. Stetsenko, Approximate solution of operator equation, Nauka, Moscow, 1969 (Russian) | MR

[19] A. Atzmon, “Power regular operators”, Trans. Amer. Math. Soc., 347 (1995), 3101–3109 | DOI | MR | Zbl

[20] T. Kato, Perturbation theory for linear operators, Mir, Moscow, 1972 (Russian) | MR | Zbl

[21] Yu. L. Daletskij, M. G. Krejn, Stability of solutions of differential equations in Banach space, Nauka, Moscow, 1970 (Russian) | MR | Zbl

[22] E. T. Whittaker, G. N. Watson, A course of modern analysis, Univ. Press, Cambridge, 1927 | MR

[23] B. Ya. Levin, Distribution of zeros of entire functions, AMS, Providence, RI, 1964

[24] A. A. Kirillov, A. D. Gvishiani, Theorems and problems of functional analysis, Second ed., Nauka, Moscow, 1988 (Russian) | MR