Eigenvalue distribution of diluted random matrix ensemble with correlated entries appearing in the random
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 1 (2005) no. 1, pp. 35-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Existing of weak limit in probability of counting measures of some ensemble of the diluted random matrices is proved. The Stiltjes transform of limiting measure is expressed by the function. This function is unique solution of the functional equation.
@article{JMAG_2005_1_1_a1,
     author = {V. V. Vengerovsky},
     title = {Eigenvalue distribution of diluted random matrix ensemble with correlated entries appearing in the random},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {35--52},
     year = {2005},
     volume = {1},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a1/}
}
TY  - JOUR
AU  - V. V. Vengerovsky
TI  - Eigenvalue distribution of diluted random matrix ensemble with correlated entries appearing in the random
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2005
SP  - 35
EP  - 52
VL  - 1
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a1/
LA  - ru
ID  - JMAG_2005_1_1_a1
ER  - 
%0 Journal Article
%A V. V. Vengerovsky
%T Eigenvalue distribution of diluted random matrix ensemble with correlated entries appearing in the random
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2005
%P 35-52
%V 1
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a1/
%G ru
%F JMAG_2005_1_1_a1
V. V. Vengerovsky. Eigenvalue distribution of diluted random matrix ensemble with correlated entries appearing in the random. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 1 (2005) no. 1, pp. 35-52. http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a1/

[1] E. Wigner, “Characteristic vectors of bordered matrices with infinite dimensions”, Ann. Math., 62 (1955), 548–564 | DOI | MR | Zbl

[2] M. L. Mehta, Random Matrices, Acad. Press, New York, 1991 | MR | Zbl

[3] L. A. Pastur, “Random matrices as paradigm”, Math. Physics, eds. A. Fokas, A. Grigoryan, T. Kibble, B. Zegarlinski, World Scientific, Singapore, 2000

[4] A. D. Mirlin, Y. V. Fyodorov, “Universality of the level correlation functions of sparse random matrices”, J. Phys. A: Math. Jen., 24 (1991), 2273–2286 | DOI | MR | Zbl

[5] Y. V. Fyodorov, A. D. Mirlin, “Strong eigenfunction correlations near the Anderson localization transition”, Phys. Rev. B, 55 (1997), R16001–R16004 | DOI

[6] M. Cvetkovich, M. Doob, H. Sachs, Spectra of Graphs. Acad. Press, New York, 1980 | MR

[7] M. Bauer, O. Golinelli, “Random incidence matrices: moments and spectral density”, J. Stat. Phys., 103 (2001), 301–336 | DOI | MR

[8] O. Khorunzhy, M. Shcherbina, V. Vengerovsky, “Eigenvalue distribution of large weighted random graphs”, J. Math. Phys., 45 (2004), 1648–1672 | DOI | MR | Zbl

[9] R. K. Chung Fan, Spectra Graph Theory, AMS, Providence, RI, 1997 | MR | Zbl

[10] J. Jonasson, “On the cover time for random walks on random graphs”, Combin. Probab. Comput., 7 (1998), 265–279 | DOI | MR | Zbl

[11] D. Y. Peng, “The average return time of random walks in random graphs”, J. Math. (Wuhan), 11 (1991), 140–144 | MR | Zbl

[12] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover Publ., New York, 1972

[13] A. N. Shiryaev, Probability, Second Edition, Nauka, Moscow, 1989 | MR