@article{JMAG_2005_1_1_a0,
author = {E. P. Belan},
title = {Travelling waves dynamics in a nonlinear parabolic equation with a shifted spatial argument},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {3--34},
year = {2005},
volume = {1},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a0/}
}
TY - JOUR AU - E. P. Belan TI - Travelling waves dynamics in a nonlinear parabolic equation with a shifted spatial argument JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2005 SP - 3 EP - 34 VL - 1 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a0/ LA - ru ID - JMAG_2005_1_1_a0 ER -
E. P. Belan. Travelling waves dynamics in a nonlinear parabolic equation with a shifted spatial argument. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 1 (2005) no. 1, pp. 3-34. http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a0/
[1] S. A. Akhmanov, M. A. Vorontsov, V. Yu. Ivanov., Structure generation in optical systems with two-dimensional feedback: toward the development of nonlinear optical analogues of neuron networks. New principles of treatment of optical information, Nauka, Moscow, 1990 (Russian)
[2] S. A. Kashchenko, “Asymptotics of spatially inhomogeneous structures in coherent nonlinear-optical systems”, Zhurn. Vychisl. Mat. i Mat. Fiz., 31 (1991), 467–473 (Russian) | MR
[3] A. V. Razgulin, “Self-induced oscillations in a nonlinear parabolic problem with a transformed argument”, Zhurn. Vychisl. Mat. i Mat. Fiz., 33 (1993), 69–80 (Russian) | MR | Zbl
[4] E. V. Grigorieva, H. Haken, S. A. Kashchenko, A. Pelster, “Travelling wave dynamics in a nonlinear interferometer with spatial field transformer in feedback”, Physika D, 125 (1999), 123–141 | DOI | Zbl
[5] E. P. Belan, “On the interaction of travelling waves in a parabolic functional-differential equation”, Diff. Uravn., 40 (2004), 645–654 (Russian) | MR | Zbl
[6] A. L. Skubachevskii, “Bifurcation of periodic solution for nonlinear parabolic functional differential equations arising in optoelectronics”, Nonlinear Anal.: Theory, Meth. and Appl., 12 (1998), 261–278 | DOI | MR
[7] A. L. Skubachevskii, “On the Hopf bifurcation for a quasilinear parabolic functional-differential equation”, Diff. Uravn., 34 (1998), 1394–1401 (Russian) | MR | Zbl
[8] E. P. Belan, “On the bifurcation of periodic solutions in a parabolic functional-differential equation”, Tavrida National University, Letters. Ser. Mat., Mech., Inform., Cybernet., 2002, no. 2, 11–23 (Russian)
[9] E. P. Belan, O. B. Lykova, “On the bifurcation of rotating waves in a parabolic problem with a transformed argument”, Dop. Nats. Akad. Nauk Ukr., 2003, no. 1, 7–12 (Russian) | MR | Zbl
[10] E. P. Belan, “On auto-oscillations in a singularly perturbed parabolic equation with a transformed argument”, Dop. Nats. Akad. Nauk Ukr., 2002, no. 7, 7–12 | MR | Zbl
[11] E. P. Belan, “Bifurcation of dissipative structures in a parabolic problem with the modified argument and a small diffusion”, Proc. Ukr. Math. Congress-2001, Dynamical systems, Institute of Mathematics, Kiev, 2003, 20–33 (Russian) | MR | Zbl
[12] E. P. Belan, “On the bufferness in a parabolic problem with the modified argument and a small diffusion”, Diff. Uravn., 39 (2003), 1576–1577 (Russian) | MR
[13] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “The phenomenon of the parametric buffer property in systems of parabolic and hyperbolic equations with small diffusion”, Ukr. Mat. Zhurn., 50:1 (1998), 22–35 (Russian) | MR | Zbl
[14] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “The buffer phenomenon in resonance systems of nonlinear hyperbolic equations”, Uspekhi Mat. Nauk, 55:2 (2000), 95–120 (Russian) | DOI | MR | Zbl
[15] A. Yu. Kolesov, N. Kh. Rozov, “Parametric excitation of high-mode oscillations in the nonlinear telegraph equation”, Mat. Sb., 191:8 (2000), 45–68 (Russian) | DOI | MR | Zbl
[16] N. N. Bogolubov, Ju. A. Mitropolski, Asymptotical methods in nonlinear oscillation theory, Nauka, Moscow, 1969 (Russian)
[17] Ju. A. Mitropolski, O. B. Lykova, Integral manifolds in nonlinear mechanics, Nauka, Moscow, 1973 (Russian) | MR
[18] V. A. Pliss, “A reduction principle in the theory of stability of motion”, Izv. Akad. Nauk SSSR. Ser. Mat., 28 (1964), 1297–1324 (Russian) | MR | Zbl
[19] D. Ruelle, “Bifurcations in the presence of a symmetry group”, Arch. Rat. Mech. Anal., 51:2 (1973), 136–152 | DOI | MR | Zbl
[20] Ju. A. Mitropolski, B. I. Moiseyenkov, Asymptotical solutions of partial differential equations, Vyshcha Shkola, Kiev, 1976 (Russian)
[21] J. E. Marsden, M. McCracken, Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, Moscow, 1980 (Russian) | MR | Zbl
[22] V. I. Arnol'd, V. S. Afrajmovich, Yu. S. Il'yashenko, L. P. Shil'nikov, “Bifurcation theory”, Itogi Nauki i Tekhniki. Current problems in mathematics. Fundamental directions, 5, VINITI, Moscow, 1985, 5–218 (Russian) | MR
[23] O. B. Lykova, Ya. B. Baris, Approximate integral manifolds, Naukova Dumka, Kiev, 1993 (Russian)
[24] Y. A. Kuznetzov, Elements of applied bifurcation theory, Springer-Verlag, New York, 1998 | MR
[25] M. I. Rabinovich, D. I. Trubetskov, Introduction to the theory of oscillation and wave, Nauka, Moscow, 1984 (Russian) | Zbl
[26] A. V. Gaponov-Grekhov, A. S. Lomov, G. V. Osipov, M. I. Rabinovich, “Pattern formation and dynamics of two-dimensional structures in nonequilibrium dissipative media”, Nonlinear waves. Res. Rep. Phys., 1, Springer, Berlin, 1989, 65–89 | MR
[27] A. D. Myshkis, “Mixed functional-differential equations”, Sovrem. Mat. Fundam. Napravl., 4, 2003, 5–120 (Russian) | MR
[28] Ya. B. Zeldovich, B. A. Malomed, “Complex wave regimes in distributed dynamical systems”, Radiophys. and Quantum Electronics, 25 (1982), 591–618 (Russian) | DOI | MR
[29] A. V. Babin, M. I. Vishik, Attractors of evolutional equations, Nauka, Moscow, 1989 (Russian) | MR | Zbl
[30] R. Temam, Infinite-dimensional dynamical systems in mechnics and physics, Springer, New York, 1988 | MR | Zbl
[31] I. D. Chueshov, Introduction to the theory of inertial manifolds, Kharkov Gos. Univ., Kharkov, 1982 (Russian)
[32] I. D. Chueshov, Introduction to the theory of infinite-dimensional dissippative systems, Acta Sci. Publ. House, Kharkov, 2002 | Zbl
[33] A. P. Aldushin, B. A. Malomed, “Phenomenological description of nonstationary non-homogeneous burn waves”, Fizika goreniya i vzryva, 17:1 (1981), 3–12 (Russian)
[34] A. B. Vasil'eva, S. A. Kashchenko, Yu. S. Kolesov, N. Kh. Rozov, “The bifurcation of auto-oscillation of nonlinear parabolic equations with a small diffusion”, Mat. Sb., 30(172):4(8) (1986), 488–499 (Russia) | MR | Zbl
[35] J. Hale, Theory of Functional Differential Equations, New York–Heidelberg–Berlin, Springer-Verlag, 1977 | MR | Zbl
[36] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966 | MR
[37] A. Yu. Kolesov, N. Kh. Rozov, “Optical buffering and mechanisms for its occurrence”, Teoret. Mat. Fiz., 140:1 (2004), 14–28 (Russian) | DOI | MR | Zbl