Travelling waves dynamics in a nonlinear parabolic equation with a shifted spatial argument
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 1 (2005) no. 1, pp. 3-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The local dynamics of a nonlinear parabolic equation on a circle with a shifted spatial argument and a small diffusion is studied. It is proved that the travelling waves interaction satisfies to 1:2 principle. The maximum principle for amplitudes with coefficient 2/3 is established. A number of stable travelling waves increases when the diffusion coeffcient tends to zero.
@article{JMAG_2005_1_1_a0,
     author = {E. P. Belan},
     title = {Travelling waves dynamics in a nonlinear parabolic equation with a shifted spatial argument},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {3--34},
     year = {2005},
     volume = {1},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a0/}
}
TY  - JOUR
AU  - E. P. Belan
TI  - Travelling waves dynamics in a nonlinear parabolic equation with a shifted spatial argument
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2005
SP  - 3
EP  - 34
VL  - 1
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a0/
LA  - ru
ID  - JMAG_2005_1_1_a0
ER  - 
%0 Journal Article
%A E. P. Belan
%T Travelling waves dynamics in a nonlinear parabolic equation with a shifted spatial argument
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2005
%P 3-34
%V 1
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a0/
%G ru
%F JMAG_2005_1_1_a0
E. P. Belan. Travelling waves dynamics in a nonlinear parabolic equation with a shifted spatial argument. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 1 (2005) no. 1, pp. 3-34. http://geodesic.mathdoc.fr/item/JMAG_2005_1_1_a0/

[1] S. A. Akhmanov, M. A. Vorontsov, V. Yu. Ivanov., Structure generation in optical systems with two-dimensional feedback: toward the development of nonlinear optical analogues of neuron networks. New principles of treatment of optical information, Nauka, Moscow, 1990 (Russian)

[2] S. A. Kashchenko, “Asymptotics of spatially inhomogeneous structures in coherent nonlinear-optical systems”, Zhurn. Vychisl. Mat. i Mat. Fiz., 31 (1991), 467–473 (Russian) | MR

[3] A. V. Razgulin, “Self-induced oscillations in a nonlinear parabolic problem with a transformed argument”, Zhurn. Vychisl. Mat. i Mat. Fiz., 33 (1993), 69–80 (Russian) | MR | Zbl

[4] E. V. Grigorieva, H. Haken, S. A. Kashchenko, A. Pelster, “Travelling wave dynamics in a nonlinear interferometer with spatial field transformer in feedback”, Physika D, 125 (1999), 123–141 | DOI | Zbl

[5] E. P. Belan, “On the interaction of travelling waves in a parabolic functional-differential equation”, Diff. Uravn., 40 (2004), 645–654 (Russian) | MR | Zbl

[6] A. L. Skubachevskii, “Bifurcation of periodic solution for nonlinear parabolic functional differential equations arising in optoelectronics”, Nonlinear Anal.: Theory, Meth. and Appl., 12 (1998), 261–278 | DOI | MR

[7] A. L. Skubachevskii, “On the Hopf bifurcation for a quasilinear parabolic functional-differential equation”, Diff. Uravn., 34 (1998), 1394–1401 (Russian) | MR | Zbl

[8] E. P. Belan, “On the bifurcation of periodic solutions in a parabolic functional-differential equation”, Tavrida National University, Letters. Ser. Mat., Mech., Inform., Cybernet., 2002, no. 2, 11–23 (Russian)

[9] E. P. Belan, O. B. Lykova, “On the bifurcation of rotating waves in a parabolic problem with a transformed argument”, Dop. Nats. Akad. Nauk Ukr., 2003, no. 1, 7–12 (Russian) | MR | Zbl

[10] E. P. Belan, “On auto-oscillations in a singularly perturbed parabolic equation with a transformed argument”, Dop. Nats. Akad. Nauk Ukr., 2002, no. 7, 7–12 | MR | Zbl

[11] E. P. Belan, “Bifurcation of dissipative structures in a parabolic problem with the modified argument and a small diffusion”, Proc. Ukr. Math. Congress-2001, Dynamical systems, Institute of Mathematics, Kiev, 2003, 20–33 (Russian) | MR | Zbl

[12] E. P. Belan, “On the bufferness in a parabolic problem with the modified argument and a small diffusion”, Diff. Uravn., 39 (2003), 1576–1577 (Russian) | MR

[13] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “The phenomenon of the parametric buffer property in systems of parabolic and hyperbolic equations with small diffusion”, Ukr. Mat. Zhurn., 50:1 (1998), 22–35 (Russian) | MR | Zbl

[14] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “The buffer phenomenon in resonance systems of nonlinear hyperbolic equations”, Uspekhi Mat. Nauk, 55:2 (2000), 95–120 (Russian) | DOI | MR | Zbl

[15] A. Yu. Kolesov, N. Kh. Rozov, “Parametric excitation of high-mode oscillations in the nonlinear telegraph equation”, Mat. Sb., 191:8 (2000), 45–68 (Russian) | DOI | MR | Zbl

[16] N. N. Bogolubov, Ju. A. Mitropolski, Asymptotical methods in nonlinear oscillation theory, Nauka, Moscow, 1969 (Russian)

[17] Ju. A. Mitropolski, O. B. Lykova, Integral manifolds in nonlinear mechanics, Nauka, Moscow, 1973 (Russian) | MR

[18] V. A. Pliss, “A reduction principle in the theory of stability of motion”, Izv. Akad. Nauk SSSR. Ser. Mat., 28 (1964), 1297–1324 (Russian) | MR | Zbl

[19] D. Ruelle, “Bifurcations in the presence of a symmetry group”, Arch. Rat. Mech. Anal., 51:2 (1973), 136–152 | DOI | MR | Zbl

[20] Ju. A. Mitropolski, B. I. Moiseyenkov, Asymptotical solutions of partial differential equations, Vyshcha Shkola, Kiev, 1976 (Russian)

[21] J. E. Marsden, M. McCracken, Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, Moscow, 1980 (Russian) | MR | Zbl

[22] V. I. Arnol'd, V. S. Afrajmovich, Yu. S. Il'yashenko, L. P. Shil'nikov, “Bifurcation theory”, Itogi Nauki i Tekhniki. Current problems in mathematics. Fundamental directions, 5, VINITI, Moscow, 1985, 5–218 (Russian) | MR

[23] O. B. Lykova, Ya. B. Baris, Approximate integral manifolds, Naukova Dumka, Kiev, 1993 (Russian)

[24] Y. A. Kuznetzov, Elements of applied bifurcation theory, Springer-Verlag, New York, 1998 | MR

[25] M. I. Rabinovich, D. I. Trubetskov, Introduction to the theory of oscillation and wave, Nauka, Moscow, 1984 (Russian) | Zbl

[26] A. V. Gaponov-Grekhov, A. S. Lomov, G. V. Osipov, M. I. Rabinovich, “Pattern formation and dynamics of two-dimensional structures in nonequilibrium dissipative media”, Nonlinear waves. Res. Rep. Phys., 1, Springer, Berlin, 1989, 65–89 | MR

[27] A. D. Myshkis, “Mixed functional-differential equations”, Sovrem. Mat. Fundam. Napravl., 4, 2003, 5–120 (Russian) | MR

[28] Ya. B. Zeldovich, B. A. Malomed, “Complex wave regimes in distributed dynamical systems”, Radiophys. and Quantum Electronics, 25 (1982), 591–618 (Russian) | DOI | MR

[29] A. V. Babin, M. I. Vishik, Attractors of evolutional equations, Nauka, Moscow, 1989 (Russian) | MR | Zbl

[30] R. Temam, Infinite-dimensional dynamical systems in mechnics and physics, Springer, New York, 1988 | MR | Zbl

[31] I. D. Chueshov, Introduction to the theory of inertial manifolds, Kharkov Gos. Univ., Kharkov, 1982 (Russian)

[32] I. D. Chueshov, Introduction to the theory of infinite-dimensional dissippative systems, Acta Sci. Publ. House, Kharkov, 2002 | Zbl

[33] A. P. Aldushin, B. A. Malomed, “Phenomenological description of nonstationary non-homogeneous burn waves”, Fizika goreniya i vzryva, 17:1 (1981), 3–12 (Russian)

[34] A. B. Vasil'eva, S. A. Kashchenko, Yu. S. Kolesov, N. Kh. Rozov, “The bifurcation of auto-oscillation of nonlinear parabolic equations with a small diffusion”, Mat. Sb., 30(172):4(8) (1986), 488–499 (Russia) | MR | Zbl

[35] J. Hale, Theory of Functional Differential Equations, New York–Heidelberg–Berlin, Springer-Verlag, 1977 | MR | Zbl

[36] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966 | MR

[37] A. Yu. Kolesov, N. Kh. Rozov, “Optical buffering and mechanisms for its occurrence”, Teoret. Mat. Fiz., 140:1 (2004), 14–28 (Russian) | DOI | MR | Zbl