A dimension-reduced description of general Brownian motion by non-autonomous diffusion-like equations
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2005) no. 2, pp. 187-202
Cet article a éte moissonné depuis la source Math-Net.Ru
The Brownian motion of a classical particle can be described by a Fokker–Planck-like equation. Its solution is a probability density in phase space. By integrating this density w.r.t. the velocity, we get the spatial distribution or concentration. We reduce the $2n$-dimensional problem to an $n$-dimensional diffusion-like equation in a rigorous way, i.e., without further assumptions in the case of general Brownian motion, when the particle is forced by linear friction and homogeneous random (non-Gaussian) noise. Using a representation with pseudodifferential operators, we derive a reduced diffusion-like equation, which turns out to be non-autonomous and can become elliptic for long times and hyperbolic for short times, although the original problem was time homogeneous. Moreover, we consider some examples: the classical Brownian motion (Gaussian noise), the Cauchy noise case (which leads to an autonomous diffusion-like equation), and the free particle case.
@article{JMAG_2005_12_2_a4,
author = {Holger Stephan},
title = {A dimension-reduced description of general {Brownian} motion by non-autonomous diffusion-like equations},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {187--202},
year = {2005},
volume = {12},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2005_12_2_a4/}
}
TY - JOUR AU - Holger Stephan TI - A dimension-reduced description of general Brownian motion by non-autonomous diffusion-like equations JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2005 SP - 187 EP - 202 VL - 12 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2005_12_2_a4/ LA - en ID - JMAG_2005_12_2_a4 ER -
%0 Journal Article %A Holger Stephan %T A dimension-reduced description of general Brownian motion by non-autonomous diffusion-like equations %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2005 %P 187-202 %V 12 %N 2 %U http://geodesic.mathdoc.fr/item/JMAG_2005_12_2_a4/ %G en %F JMAG_2005_12_2_a4
Holger Stephan. A dimension-reduced description of general Brownian motion by non-autonomous diffusion-like equations. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2005) no. 2, pp. 187-202. http://geodesic.mathdoc.fr/item/JMAG_2005_12_2_a4/